Vol. 149
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-10-30
Digital Non-Foster Impedance Design for Wideband Electrically Small Antennas Beyond the Chu Limit
By
Progress In Electromagnetics Research C, Vol. 149, 131-141, 2024
Abstract
Although initial results for the digital implementation of non-Foster impedances showed promise for increasing the bandwidth of electrically small antennas beyond the Chu limit, earlier approximate design methods were inadequate to fully describe the complexity of digital impedance circuits. Recently, the input impedance of such digital impedance circuits was discovered to be dependent on the external source impedance of the driving source. Furthermore, this dependence on the driving source impedance was shown to be extraordinarily complicated, even for a purely resistive driving source. Consequently, the digital non-Foster impedance match of an antenna is considerably more complicated, even with a lumped-element antenna model. In this paper, we present a method for designing a stable wideband digital non-Foster circuit to match the impedance of an electrically small dipole antenna. Simulation results confirm the theoretical predictions and the efficacy of the design method in producing VSWR bandwidth beyond the Wheeler-Chu limit. An RLC model of a 10 MHz electrically small dipole with Q of 215 and passive-tuned bandwidth of 46.5 kHz is chosen to demonstrate the proposed method. For this antenna with Wheeler-Chu bandwidth limit of 442 kHz and size parameter ka = 0.42 rad, the proposed method results in achieving an impedance bandwidth of 2.3 MHz, or more than five times the Wheeler-Chu limit and 48 times the passive-tuned bandwidth. Lastly, the mid-band noise figure is 12.7 dB when the proposed design is combined with a receiver having 3 dB noise figure.
Citation
Christopher Daniel Jr., and Thomas Weldon, "Digital Non-Foster Impedance Design for Wideband Electrically Small Antennas Beyond the Chu Limit," Progress In Electromagnetics Research C, Vol. 149, 131-141, 2024.
doi:10.2528/PIERC24092308
References

1. Chu, L. J., "Physical limitations of omnidirectional antennas," Journal of Applied Physics, Vol. 19, No. 12, 1163-1175, 1948.

2. Wheeler, Harold A., "Fundamental limitations of small antennas," Proceedings of the IRE, Vol. 35, No. 12, 1479-1484, Dec. 1947.

3. Sievenpiper, Daniel F., David C. Dawson, Minu M. Jacob, Tumay Kanar, Sanghoon Kim, Jiang Long, and Ryan G. Quarfoth, "Experimental validation of performance limits and design guidelines for small antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 8-19, Jan. 2012.

4. Dagefu, Fikadu T., Jihun Choi, Brian M. Sadler, and Kamal Sarabandi, "A survey of small, low-frequency antennas: Recent designs, practical challenges, and research directions," IEEE Antennas and Propagation Magazine, Vol. 65, No. 1, 14-26, 2021.

5. Linvill, John G., "Transistor negative-impedance converters," Proceedings of the IRE, Vol. 41, No. 6, 725-729, Jun. 1953.

6. Sedra, AS, Gordon W Roberts, and F Gohh, "The current conveyor: History, progress and new results," Circuits, Devices and Systems, IEE Proc. G, Vol. 137, No. 2, 78-87, 1990.

7. Sussman-Fort, Stephen E. and Ronald M. Rudish, "Non-Foster impedance matching of electrically-small antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2230-2241, Aug. 2009.

8. Barbuto, Mirko, Alessio Monti, Filiberto Bilotti, and Alessandro Toscano, "Design of a non-Foster actively loaded SRR and application in metamaterial-inspired components," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1219-1227, Mar. 2013.

9. Buiantuev, Bair, Nikita Kalmykov, Dmitry Kholodnyak, Ante Brizić, Leo Vincelj, and Silvio Hrabar, "Physically oriented design of negative capacitors based on linvill’s floating impedance converter," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 1, 139-154, 2022.

10. Gregoire, Daniel J., Carson R. White, and Joseph S. Colburn, "Wideband artificial magnetic conductors loaded with non-Foster negative inductors," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1586-1589, 2011.

11. Shi, Ting, Ming-Chun Tang, Zhentian Wu, He-Xiu Xu, and Richard W. Ziolkowski, "Improved signal-to-noise ratio, bandwidth-enhanced electrically small antenna augmented with internal non-foster elements," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2763-2768, 2019.

12. Shih, Ting-Yen and Nader Behdad, "Wideband, non-Foster impedance matching of electrically small transmitting antennas," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 5687-5697, 2018.

13. Choi, Jihun, Fikadu T. Dagefu, Brian M. Sadler, and Kamal Sarabandi, "A miniature actively matched antenna for power-efficient and bandwidth-enhanced operation at low VHF," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 556-561, 2021.

14. Jacob, Minu M. and Daniel F. Sievenpiper, "Non-Foster matched antennas for high-power applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 9, 4461-4469, Sep. 2017.

15. Vincelj, L., R. W. Ziolkowski, and S. Hrabar, "Experimental demonstration of non-Foster self-oscillating Huygens radiator," 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 508-510, New York, NY, USA, Sep. 2020.

16. White, Carson R., Joseph S. Colburn, and Robert G. Nagele, "A non-Foster VHF monopole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 584-587, 2012.

17. Mirzaei, Hassan and George V. Eleftheriades, "A resonant printed monopole antenna with an embedded non-Foster matching network," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5363-5371, Nov. 2013.

18. Rasmussen, Curtis and Andrea Alù, "Non-Foster acoustic radiation from an active piezoelectric transducer," Proceedings of the National Academy of Sciences, Vol. 118, No. 30, e2024984118, 2021.
doi:10.1073/pnas.2024984118

19. Hayran, Zeki and Francesco Monticone, "Using time-varying systems to challenge fundamental limitations in electromagnetics: Overview and summary of applications," IEEE Antennas and Propagation Magazine, Vol. 65, No. 4, 29-38, 2023.

20. Mekawy, Ahmed, Huanan Li, Younes Radi, and Andrea Alù, "Parametric enhancement of radiation from electrically small antennas," Physical Review Applied, Vol. 15, No. 5, 054063, May 2021.

21. Loghmannia, Pedram and Majid Manteghi, "Broadband parametric impedance matching for small antennas using the Bode-Fano limit: Improving on Chu's limit for loaded small antennas," IEEE Antennas and Propagation Magazine, Vol. 64, No. 5, 55-68, 2022.

22. Fano, Robert M., "Theoretical limitations on the broadband matching of arbitrary impedances," Journal of the Franklin Institute, Vol. 249, No. 1, 57-83, 1950.

23. Bode, H., Network Analysis and Feedback Amplifier Design, ser., The Bell Telephone Laboratories Series. Van Nostrand, 1945.

24. Carlin, H. and P. Crepeau, "Theoretical limitations on the broad-band matching of arbitrary impedances," IRE Transactions on Circuit Theory, Vol. 8, No. 2, 165-165, 1961.

25. Ugarte-Munoz, Eduardo, Silvio Hrabar, Daniel Segovia-Vargas, and Aleksandar Kiricenko, "Stability of non-Foster reactive elements for use in active metamaterials and antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3490-3494, Jul. 2012.

26. Stearns, Stephen D., "Incorrect stability criteria for non-Foster circuits," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, Chicago, IL, USA, Jul. 2012.

27. Stearns, Stephen D., "Stable band-pass non-Foster circuits," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1386-1387, Vancouver, BC, Canada, Jul. 2015.

28. Ugarte-Muñoz, Eduardo, Silvio Hrabar, and Daniel Segovia-Vargas, "Investigation of stability of negative impedances for use in active metamaterials and antennas," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 2059-2063, Rome, Italy, Apr. 2011.

29. Xu, Zhiwei, Michael W. Yung, Donald A. Hitko, and Carson R. White, Non-foster circuit stabilization method, Google Patents, 2015.

30. Daniel, Christopher G. and Thomas P. Weldon, "A stable digital impedance circuit design method for resistive source impedances," IEEE Open Journal of Circuits and Systems, Vol. 3, 109-114, 2022.

31. Weldon, Thomas P., Digital discrete-time non-foster circuits and elements, Google Patents, 2018.

32. Kehoe, Patrick J., Killian K. Steer, and Thomas P. Weldon, "Thevenin forms of digital discrete-time non-Foster RC and RL circuits," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 191-192, Fajardo, PR, USA, Jun. 2016.

33. Weldon, Thomas P., John M. C. Covington, Kathryn L. Smith, and Ryan S. Adams, "Stability conditions for a digital discrete-time non-Foster circuit element," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 71-72, Vancouver, BC, Canada, Jul. 2015.

34. Friis, H. T., "A note on a simple transmission formula," Proceedings of the IRE, Vol. 34, No. 5, 254-256, May 1946.

35. Weldon, Thomas P., "Use of a digital non-foster radio architecture for conventional tuning of electrically-small antennas," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1921-1922, Boston, MA, USA, Jul. 2018.

36. Weldon, Thomas P., "A digital non-foster VHF radio approach for enabling low-power internet of things," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 1-5, Seville, Spain, Oct. 2020.

37. Smith, Kathryn L., Ryan S. Adams, and Thomas P. Weldon, "Measurement of a fast-wave line using digital non-Foster circuits for software-adjustable delay," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 193-194, Fajardo, PR, USA, Jun. 2016.

38. Hecht, Kristy A., Christopher G. Daniel, and Thomas P. Weldon, "Effect of external source impedance on the input impedance of digital impedance circuits," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 1-5, Seville, Spain, Oct. 2020.

39. Phillips, C. and H. Nagle, Digital Control System Analysis and Design, Prentice-Hall, 1990.

40. Oppenheim, A. V. and R. W. Schafer, Discrete-time Signal Processing, 3rd Ed., Prentice Hall, 2009.

41. Tang, Tee G., Quang M. Tieng, and Moms W. Gunn, "Equivalent circuit of a dipole antenna using frequency-independent lumped elements," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 1, 100-103, Jan. 1993.

42. Temes, G. C. and J. W. LaPatra, Introduction to Circuit Synthesis and Design, McGraw Hill Book Company, 1977.

43. Weldon, T., (PASSWORD aa4488gg) Rev. 1 Dataset for Digital Non-Foster Impedance Design for Wideband Electrically Small Antennas Beyond the Chu Limit, [Online]. Available: https://dx.doi.org/10.21227/681s-w872, 2024.

44. Analog Devices, Inc., , LTC6226-6227: 1nV/√ Hz 420MHz GBW, 180V/µs, Low Distortion Rail-to-Rail Out-put Op Amps Data Sheet (Rev.0), [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/ltc6226-6227.pdf.

45. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, 2005.