Research on Multi-Field Information of Transformer with Harmonic Invasion in Offshore Wind Farm Based on Electromagnetic-Solid-Acoustic Coupling
Chao Pan,
Tongrui Fu,
Jingge An and
Diyao Jiang
Aiming at the operation stability of transformer with harmonic invasion in offshore wind farm, the evolution and propagation of electromagnetic-solid-acoustic information are studied. Combined with the measured data of invasive harmonic currents, it is found that the proportions of the 5th and 7th harmonics are larger than those of other harmonics. A multi-physical field propagation and information extraction method for transformer is proposed based on the principle of electromagnetic-solid-acoustic coupling. Then, the magnetic density, force, vibration, and noise characteristics of components with harmonic invasion are analyzed. The results show that the increase of harmonics intensifies the vibration and noise of transformer in the same load. In the same harmonic proportion, the waveform distortion of the multi-physical characteristic parameters caused by the 7th harmonic is more significant than the 5th. Moreover, the vibration and noise intensify with rising load factor in the same harmonic invasion mode. Meanwhile, the dynamic experimental platforms are built to measure multi-physics field information in different modes. By comparing the experimental data and simulation result, the accuracy of proposed method can be verified. Furthermore, the 5th harmonic is selected as the typical characterization parameter to study the mapping relationship between harmonics and vibration characteristics. The criteria for disturbed destabilization are formulated, providing new ideas for the life cycle operation and maintenance of offshore wind transformer.