Metamaterial-Based High-Efficiency Wireless Power Transfer System at 13.56 MHz
for Low Power Applications
Jun-Feng Chen
,
Zhixia Ding
,
Zhaoyang Hu
,
Shengming Wang
,
Yongzhi Cheng
,
Minghai Liu
,
Bin Wei
and
Songcen Wang
Magnetically coupled resonant wireless power transfer (WPT) has been employed in many applications, including wireless charging of portable electronic devices, electric vehicles and powering of implanted biomedical devices. However, transmission efficiency decreases sharply due to divergence of magnetic field, especially in under coupled region. Electromagnetic (EM) metamaterial (MM) can manipulate the direction of EM fields due to its abnormal effective permittivity or permeability. In this paper, an ultra-thin and extremely sub-wavelength magnetic MM is designed for a 13.56 MHz WPT system to enhance magnetic field and its power transfer efficiency (PTE). The WPT systems are investigated theoretically, experimentally and by simulation. A relatively high maximum efficiency improvement of 41.7% is obtained, and the range of efficient power transfer can be greatly extended. The proposed MM structure is very compact and ultra-thin in size compared with early publications for some miniaturized applications. In addition, large area, homogeneous magnetic field is obtained and discussed using the proposed MM. Finally, the proposed MM is applied in a more practical WPT system (with a low power light bulb load) to reveal its effects. The bulb brightness intuitively verifies the efficiency improvement in the WPT system with the MM.