Vol. 72
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-01-09
Sparsely Sampled Wideband Radar Holographic Imaging for Detection of Concealed Objects
By
Progress In Electromagnetics Research B, Vol. 72, 67-93, 2017
Abstract
Radar holography has been established as an effective image reconstruction process by which the measured diffraction pattern across an aperture provides information about a threedimensional target scene of interest. In general, the sampling and reconstruction of radar holographic images are computationally expensive. Imaging can be made more efficient with the use of sparse sampling techniques and appropriate interpolation algorithms. Through extensive simulation and experimentation, we show that simple interpolation of sparsely-sampled target scenes provides a quick and reliable approach to reconstruct sparse datasets for accurate image reconstruction leading to reliable concealed target detection and recognition. For scanning radar applications, data collection time can be drastically reduced through application of sparse sampling. This reduced scan time will typically benefit a real-time system by allowing improvements in processing speed and timeliness of decision-making algorithms. An added advantage is the reduction of required data storage. Experimental holographic data are sparsely sampled over a two-dimensional aperture and reconstructed using numerical interpolation techniques. Extensive experimental evaluation of this new technique of interpolation-based sparse sampling strategies suggests that reduced sampling rates do not degrade the objective quality of holograms of concealed objects.
Citation
Ram M. Narayanan, Scott A. Wilson, and Muralidhar Rangaswamy, "Sparsely Sampled Wideband Radar Holographic Imaging for Detection of Concealed Objects," Progress In Electromagnetics Research B, Vol. 72, 67-93, 2017.
doi:10.2528/PIERB16091908
References

1. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 9, 1581-1592, Sep. 2001.
doi:10.1109/22.942570

2. Goodman, J. W., Introduction to Fourier Optics, McGraw-Hill, 1968.

3. Brady, D. J., K. Choi, D. L. Marks, R. Horisaki, and S. Lim, "Compressive holography," Opt. Express, Vol. 17, No. 15, 13040-13049, Jul. 20, 2009.
doi:10.1364/OE.17.013040

4. Candes, E. and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Prob., Vol. 23, No. 3, 969-985, Jun. 2007.
doi:10.1088/0266-5611/23/3/008

5. Rivenson, Y. and A. Stern, "Compressive sensing techniques in holography," Proc. 10th Euro- Am. Workshop Inf. Opt. (WIO), Benicassim, Spain, Jun. 2011, doi: 10.1109/WIO.2011.5981451.

6. Hald, J., "Wideband acoustical holography," Proc. 43rd Int. Congress Noise Control Eng., 44-56, Melbourne, Australia, Nov. 2014.

7. Qiao, L., Y. Wang, Z. Shen, Z. Zhao, and Z. Chen, "Compressive sensing for direct millimeter-wave holographic imaging," Appl. Opt., Vol. 54, No. 11, 3280-3289, Apr. 10, 2015.
doi:10.1364/AO.54.003280

8. Cull, C. F., D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, "Millimeter-wave compressive holography," Appl. Opt., Vol. 49, No. 19, E67-E82, Jul. 1, 2010.
doi:10.1364/AO.49.000E67

9. Martinez-Lorenzo, J. A., F. Quivira, and C. M. Rappaport, "SAR imaging of suicide bombers wearing concealed explosive threats," Progress In Electromagnetics Research, Vol. 125, 255-272, 2012.
doi:10.2528/PIER11120518

10. Demirci, S., H. Cetinkaya, E. Yigit, C. Ozdemir, and A. Vertiy, "A study on millimeter- wave imaging of concealed objects: application using back-projection algorithm," Progress In Electromagnetics Research, Vol. 128, 457-477, 2012.
doi:10.2528/PIER12050210

11. Harmer, S. W., N. J. Bowring, N. D. Rezgui, and D. Andrews, "A comparison of ultra wide band conventional and direct detection radar for concealed human carried explosives detection," Progress In Electromagnetics Research Letters, Vol. 39, 37-47, 2013.
doi:10.2528/PIERL13012508

12. Yurduseven, O., "Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems," Progress In Electromagnetics Research, Vol. 146, 7-13, 2014.
doi:10.2528/PIER14032304

13. Wilson, S. A. and R. M. Narayanan, "Compressive wideband microwave radar holography," Proc. SPIE Conf. Radar Sensor Technol. XVIII, 907707-1-907707-8, Baltimore, MD, May 2014.

14. Wilson, S. A., R. M. Narayanan, and M. Rangaswamy, "Wideband imaging of concealed objects using compressive radar holography," Proc. IEEE Int. Radar Conf., 925-930, Arlington, VA, May 2015.

15. Gabor, D., "A new microscopic principle," Nat., Vol. 161, No. 4098, 777-778, May 15, 1948.
doi:10.1038/161777a0

16. Soumekh, M., "Bistatic synthetic aperture radar inversion with application in dynamic object imaging," IEEE Trans. Signal Process., Vol. 39, No. 9, 2044-2055, Sep. 1991.
doi:10.1109/78.134436

17. Ida, Y., K. Hayashi, and K. Ami, "The effect of reference's phase on radio-frequency holographic imaging," IEEE Trans. Antennas Propag., Vol. 30, No. 6, 1216-1221, Nov. 1982.
doi:10.1109/TAP.1982.1142942

18. Ivashov, S., V. Razevig, A. Sheyko, I. Vasilyev, A. Zhuravlev, and T. Bechtel, "Holographic subsurface radar technique and its applications," Proc. 12th Int. Conf. Ground Penetrating Radar, 1-11, Birmingham, UK, Jun. 2008.

19. Collins, H. D., D. M. Sheen, T. E. Hall, and R. P. Gribble, "UWB radar holography applied to RCS signature reduction of military vehicles," Rev. Prog. Quant. Nondestr. Eval., Vol. 16, 703-707, 1997.
doi:10.1007/978-1-4615-5947-4_92

20. Zhuravlev, A., S. Ivashov, V. Razevig, I. Vasiliev, and T. Bechtel, "Shallow depth subsurface imaging with microwave holography," Proc. SPIE Conf. Detect. Sens. Mines, Explos. Objects, and Obscured Targets XIX, 90720X-1-90720X-9, Baltimore, MD, May 2014.

21. Hunt, J., J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, "Metamaterial microwave holographic imaging system," J. Opt. Soc. Am. A, Vol. 31, No. 10, 2109-2119, Oct. 2014.
doi:10.1364/JOSAA.31.002109

22. Thevenaz, P., T. Blu, and M. Unser, "Image interpolation and resampling," Handbook of Medical Image Processing and Analysis, 2nd Edition, 465-493, edited by I. N. Bankman, Academic Press, Burlington, MA, 2009.

23. Lehmann, T. M., C. Gonner, and K. Spitzer, "Survey: interpolation methods in medical image processing," IEEE Trans. Med. Imaging, Vol. 18, No. 11, 1049-1075, Nov. 1999.
doi:10.1109/42.816070

24. Thevenaz, P., T. Blu, and M. Unser, "Interpolation revisited," IEEE Trans. Med. Imaging, Vol. 19, No. 7, 739-758, Jul. 2000.
doi:10.1109/42.875199

25. Keys, R., "Cubic convolution interpolation for digital image processing," IEEE Trans. Acoust. Speech Signal Process., Vol. 29, No. 6, 1153-1160, Dec. 1981.
doi:10.1109/TASSP.1981.1163711

26. Herman, G. T., S. W. Rowland, and M.-M. Yau, "A comparative study of the use of linear and modi¯ed cubic spline interpolation for image reconstruction," IEEE Trans. Nucl. Sci., Vol. 26, No. 2, 2879-2984, Apr. 1979.
doi:10.1109/TNS.1979.4330555

27. Hou, H. S. and H. Andrews, "Cubic splines for image interpolation and digital filtering," IEEE Trans. Acoust. Speech Signal Process., Vol. 26, No. 6, 508-517, Dec. 1978.
doi:10.1109/TASSP.1978.1163154

28. Parker, J. A., R. V. Kenyon, and D. E. Troxel, "Comparison of interpolating methods for image resampling," IEEE Trans. Med. Imaging, Vol. 2, No. 1, 31-39, Mar. 1983.
doi:10.1109/TMI.1983.4307610

29. Donoho, D. L. and J. Tanner, "Precise undersampling theorems," Proc. IEEE, Vol. 98, No. 6, 913-924, Jun. 2010.
doi:10.1109/JPROC.2010.2045630

30. Donoho, D. L., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582

31. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., Vol. 25, No. 2, 21-30, Mar. 2008.
doi:10.1109/MSP.2007.914731

32. Rivenson, Y. and A. Stern, "Compressive holography," Optical Compressive Imaging, 155-176, edited by A. Stern, CRC Press, Boca Raton, FL, 2017.

33. Keep, D. N., "Frequency-modulation radar for use in the mercantile marine," Proc. IEE --- Part B: Radio Electron. Eng., Vol. 103, No. 10, 519-523, Jul. 1956.
doi:10.1049/pi-b-1.1956.0203

34. Jahne, B., Digital Image Processing: Concepts, Algorithms, and Scientific Applications, 3rd Ed., Springer-Verlag, 2002.

35. Du, K., H. Han, and G. Wang, "A new algorithm for removing compression artifacts of wavelet- based image," Proc. 2011 IEEE Int. Conf. Comput. Sci. Autom. Eng. (CSAE), 336-340, Shanghai, China, Jun. 2011.

36. Akey, M. L. and O. R. Mitchell, "Detection and sub-pixel location of objects in digitized aerial imagery," Proc. 7th Int. Conf. Pattern Recognit., 411-414, Montreal, Canada, Jul.-Aug. 1984.

37. Daniels, D. J., D. J. Gunton, and H. F. Scott, "Introduction to subsurface radar," IEE Proc. Part F: Radar Signal Process., Vol. 135, No. 4, 278-320, Aug. 1988.
doi:10.1049/ip-f-1.1988.0038

38. Moura, J. M. F. and Y. Jin, "Detection by time reversal: Single antenna," IEEE Trans. Signal Process., Vol. 55, No. 1, 187-201, Jan. 2007.
doi:10.1109/TSP.2006.882114