Latest News

more

2021-01-01

Call-for-Papers for PIER Special Issues

Being an open access on-line journal, PIER gives great prominence to special issues that draw together significant and emerging works to promote key advances on specific topics. The special issues are devoted to timely, relevant, and cutting-edge research and aim to provide a unique platform for researchers interested in selected topics.We are now calling for papers for the following PIER Spe

Upcoming Events

more

The 43rd PIERS in Hangzhou, CHINA
21 - 25, November 2021
(from Sunday to Thursday)

--- Where microwave and lightwave communities meet

Hybrid PIERS: Onsite + Web Access

Important Dates:

  • 20 June, 2021 --- Abstract Submission Deadline
  • 20 August, 2021 --- Pre-registration Deadline
  • 25 August, 2021 --- Full-length Paper Submission Deadline
  • 20 September, 2021 --- Preliminary Program
  • 5 October, 2021 --- Advance Program
  • 20 October, 2021 --- Final Program

Quick Links:

To organize a Special Session, please fill out this
PIERS Survey Form.

Online Abstract Submission

 

Join Us in this Harvest Season - Onsite + Web Access

Night West Lake - PIERS 2021 Hangzhou, CHINA

PIERS 2021, Hangzhou, CHINA

Late autumn - PIERS 2021 Hangzhou, CHINA

West Lake - Hangzhou, CHINA

About PIER

more

Progress In Electromagnetics Research

PIER Journals are a family of journals supported by the PhotonIcs and Electromagnetics Research Symposium (PIERS), which has become a major symposium in the area related to photonics and electromagnetics. The scope includes all aspects of electromagnetic theory plus its wide-ranging applications. Hence, it includes topics motivated by mathematics, sciences as well as topics inspired by advanced technologies. The spectrum ranges from very low frequencies to ultra-violet frequencies. The length scale spans from nanometer length scale to kilometer length scale. The physics covers the classical regime as well as the quantum regime.

Hot Topics

more

Newest Articles

more

PIER

ISSN: 1070-4698
2021-04-03

L-Band Radar Scattering and Soil Moisture Retrieval of Wheat, Canola and Pasture Fields for Smap Active Algorithms

Huanting Huang, Tien-Hao Liao, Seung Bum Kim, Xiaolan Xu, Leung Tsang, Thomas J. Jackson, and Simon Yueh

Wheat, canola, and pasture are three of the major vegetation types studied during the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) conducted to support NASA's Soil Moisture Active Passive (SMAP) mission. The utilized model structure is integrated in the SMAP baseline active retrieval algorithm. Forward lookup tables (data-cubes) for VV and HH backscatters at L-band are developed for wheat and canola fields. The data-cubes have three axes: vegetation water content (VWC), root mean square (RMS) height of rough soil surface and soil permittivity. The volume scattering and doublebounce scattering of the fields are calculated using the distorted Born approximation and the coherent reflectivity in the double-bounce scattering. The surface scattering is determined by the numerical solutions of Maxwell equations (NMM3D). The results of the data-cubes are validated with airborne radar measurements collected during SMAPVEX12 for ten wheat fields, five canola fields, and three pasture fields. The results show good agreement between the data-cube simulation and the airborne data. The root mean squared errors (RMSE) were 0.82 dB, 0.78 dB, and 1.62 dB for HH, and 0.97 dB, 1.30 dB, and 1.82 dB for VV of wheat, canola, and pasture fields, respectively. The data-cubes are next used to perform the time-series retrieval of the soil moisture. The RMSEs of the soil moisture retrieval are 0.043 cm3/cm3, 0.082 cm3/cm3, and 0.082 cm3/cm3 for wheat, canola, and pasture fields, respectively. The results of this paper expand the scope of the SMAP baseline radar algorithm for wheat, canola, and pastures formed and provide a quantitative validation of its performance. It will also have applications for the upcoming NISAR (NASA-ISRO SAR Mission).....

  • In this research project, the hardware implementation of a Field-Programmable Gate Array (FPGA) based Fast Fourier Transform (FFT) will be carried out by using Verilog Hardware Description Language (HDL). Since FFT serves as the core for the Range Doppler Algorithm (RDA) in Synthetic Aperture Radar (SAR) processing, it is of paramount importance to evaluate the algorithm and its computational complexity for the design of an efficient FFT hardware architecture. The design process and Verilog hardware description language which is used to describe and model a digital FPGA-based SAR processor will be introduced. Detailed explanation of the hardware implementation for FFT and Inverse Fast Fourier Transform (IFFT) in SAR processing are thus presented. The performance evaluations of the proposed processors including the comparison of the proposed processor with MATLAB-based processor, timing considerations of the processor, and lastly the hardware resources usage considerations are delivered at the end of this paper.....
  • In this paper, a novel mechanical-variable-flux flux-intensifying interior permanent magnet (MVF-FI-IPM) motor is proposed, which employs a mechanical flux-adjusting device and owns the characteristic of Ld>Lq. The magnetic poles can be rotated by the mechanical device to vary the leakage flux and adjust the angle of magnetization direction relative to the d-axis. The characteristic of Ld>Lq is achieved through the adoption of surface flux barriers. The topology structure and operation principle of the machine are introduced. Then, the operation of the mechanical flux-adjusting device is analyzed by virtual prototype technology. Based on the two-dimensional finite element method (FEM), the electromagnetic characteristics of the proposed motor and FI-IPM motor are compared. Finally, the results show the proposed motor with a better flux-weakening capability and a lower risk of irreversible demagnetization than that of the FI-IPM motor.....
  • This paper investigates the effect of an external plane wave on a Multi-conductor transmission line (MTL) located above a multilayer soil directly in the time domain. An improved finite-difference time-domain (FDTD) method is used, in conjunction with the Vector Fitting (VF), to obtain the recursion relations of voltages and currents along the line by discretizing the equations in time and one-dimensional space. The source terms of the coupling equations are efficiently obtained in the time domain based on the Gaver-Stehfest algorithm. An equivalent model is also established in this work, where the geometry with three conductors is reduced to two conductors. Finally, some examples are presented to illustrate the effect of the soil and the plane wave on the transient.....
  • 2021-04-08

    Highly Sensitive Polymer Based Fabry-Perot Interferometer for Temperature Sensing

    Lashari Ghulam Abbas, Farhan Mumtaz, Yutang Dai, Ai Zhou, Wenbin Hu, and Muhammad Aqueel Ashraf
    A highly sensitive temperature sensor based on a polymer cavity of a Fabry-Perot interferometer (FPI) is experimentally demonstrated. The interferometer gives ease in fabrication, and it can be formed by the induction of a thermos-sensitive polymer layer in between two single mode fibers (SMFs). The polymer is used as an FPI cavity for temperature sensing. Due to high thermal expansion coefficient (TEC) and thermos-optic coefficient (TOC) of polymer make the interferometer highly sensitive to ambient temperature. The maximum temperature sensitivity of 2.2209 nm/°C for the polymer FPI cavity of 40.61 µm in the ambient temperature range of 28°C to 34°C is obtained. The proposed sensor shows the advantages of high sensitivity, compactness, simple fabrication, and low cost. Thus, it may become a part of various practical applications in the field of environmental science and engineering sciences.....