Latest News



Call-for-Papers for PIER Special Issues

Being an open access on-line journal, PIER gives great prominence to special issues that draw together significant and emerging works to promote key advances on specific topics. The special issues are devoted to timely, relevant, and cutting-edge research and aim to provide a unique platform for researchers interested in selected topics.We are now calling for papers for the following PIER Spe

Upcoming Events


The 43rd PIERS in Hangzhou, CHINA
21 - 25, November 2021
(from Sunday to Thursday)

--- Where microwave and lightwave communities meet

Hybrid PIERS: Onsite + Web Access

Important Dates:

  • 20 June, 2021 --- Abstract Submission Deadline
  • 20 August, 2021 --- Pre-registration Deadline
  • 25 August, 2021 --- Full-length Paper Submission Deadline
  • 20 September, 2021 --- Preliminary Program
  • 5 October, 2021 --- Advance Program
  • 20 October, 2021 --- Final Program

Quick Links:

To organize a Special Session, please fill out this
PIERS Survey Form.

Online Abstract Submission


Join Us in this Harvest Season - Onsite + Web Access

Night West Lake - PIERS 2021 Hangzhou, CHINA

PIERS 2021, Hangzhou, CHINA

Late autumn - PIERS 2021 Hangzhou, CHINA

West Lake - Hangzhou, CHINA

About PIER


Progress In Electromagnetics Research

PIER Journals are a family of journals supported by the PhotonIcs and Electromagnetics Research Symposium (PIERS), which has become a major symposium in the area related to photonics and electromagnetics. The scope includes all aspects of electromagnetic theory plus its wide-ranging applications. Hence, it includes topics motivated by mathematics, sciences as well as topics inspired by advanced technologies. The spectrum ranges from very low frequencies to ultra-violet frequencies. The length scale spans from nanometer length scale to kilometer length scale. The physics covers the classical regime as well as the quantum regime.

Hot Topics


Newest Articles



ISSN: 1070-4698

L-Band Radar Scattering and Soil Moisture Retrieval of Wheat, Canola and Pasture Fields for Smap Active Algorithms

Huanting Huang, Tien-Hao Liao, Seung Bum Kim, Xiaolan Xu, Leung Tsang, Thomas J. Jackson, and Simon Yueh

Wheat, canola, and pasture are three of the major vegetation types studied during the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) conducted to support NASA's Soil Moisture Active Passive (SMAP) mission. The utilized model structure is integrated in the SMAP baseline active retrieval algorithm. Forward lookup tables (data-cubes) for VV and HH backscatters at L-band are developed for wheat and canola fields. The data-cubes have three axes: vegetation water content (VWC), root mean square (RMS) height of rough soil surface and soil permittivity. The volume scattering and doublebounce scattering of the fields are calculated using the distorted Born approximation and the coherent reflectivity in the double-bounce scattering. The surface scattering is determined by the numerical solutions of Maxwell equations (NMM3D). The results of the data-cubes are validated with airborne radar measurements collected during SMAPVEX12 for ten wheat fields, five canola fields, and three pasture fields. The results show good agreement between the data-cube simulation and the airborne data. The root mean squared errors (RMSE) were 0.82 dB, 0.78 dB, and 1.62 dB for HH, and 0.97 dB, 1.30 dB, and 1.82 dB for VV of wheat, canola, and pasture fields, respectively. The data-cubes are next used to perform the time-series retrieval of the soil moisture. The RMSEs of the soil moisture retrieval are 0.043 cm3/cm3, 0.082 cm3/cm3, and 0.082 cm3/cm3 for wheat, canola, and pasture fields, respectively. The results of this paper expand the scope of the SMAP baseline radar algorithm for wheat, canola, and pastures formed and provide a quantitative validation of its performance. It will also have applications for the upcoming NISAR (NASA-ISRO SAR Mission).....

  • 2021-04-27

    Orthogonal System of Eigenwaves of an Open Cylindrical Gyrotropic Waveguide Located in Free Space

    Vasiliy A. Es'kin, Alexander V. Kudrin, and Nadezhda V. Yurasova
    A new method for obtaining an orthogonal system of eigenwaves of an open cylindrical waveguide filled with a gyrotropic medium and located in free space is presented. The advantage of the method is that it enables one to explicitly represent the fields of eigenwaves, which correspond to the discrete and continuous parts of the eigenvalue spectrum of such a guiding structure. Orthogonality relations for the eigenwaves and the procedure of expanding an electromagnetic field in terms of these modal solutions are discussed. The limiting transition from the case of a closed cylindrical waveguide with a perfectly conducting wall and a coaxial cylindrical gyrotropic core to the case of an open waveguide is considered. To illustrate the completeness of the obtained system of eigenwaves, a given field is expanded in terms of the found discrete- and continuous-spectrum waves and then resynthesized by evaluating the corresponding expansion numerically. Perfect coincidence between the initially specified field and the result yielded by this evaluation is demonstrated.....
  • A dual-band wearable antenna operating at 2.45 GHz and 5.80 GHz with compact Artificial Magnetic Conductor (AMC) plane is proposed in this paper. The design is based on a U-shaped printed monopole antenna operating in the Industrial, Science, Medical (ISM) bands, and it is integrated with a square looped AMC plane which can reduce the overall size of the antenna system and realize miniaturization. The U-shaped monopole antenna is miniaturized by folding its arms, and its resonant frequency can be tuned easily by adjusting the length of two branches. The AMC unit, which is composed of concentric square double rings, realizes dual-band resonance. Meanwhile, a crossed patch is loaded into the inner ring to increase the electromagnetic coupling and reduce the resonance frequency of the two rings, thus miniaturizing the AMC unit. Therefore, the total size of the AMC plane which contains 3×3 elements is only 59.1 mm × 59.1 mm. Specific Absorption Rate (SAR) is examined by loading a three-layer human body tissue under the AMC antenna, and the simulation results show that SAR value is only 0.018 W/kg, which is far below the Institute of Electrical and Electronics Engineer (IEEE) standard. Finally, a prototype of the proposed antenna was fabricated and tested, and the experimental results agree well with the simulation responses.....
  • In this paper, a triple-band reflective polarization converter with high efficiency for both linear-to-linear and linear-to-circular polarizations based on a metasurface is proposed, which can rotate a linearly polarized (LP) incident wave into its orthogonal direction with over 90% polarization conversion ratio (PCR) in the bands of 5.5-5.9 GHz (relative bandwidth of 7%) and 12-17.7 GHz (relative bandwidth of 38.4%). Besides, the proposed converter can also transform a linearly polarized incident wave to circularly polarized (CP) wave in the band of 6-12 GHz (relative bandwidth of 66.7%). Additionally, the performance of proposed polarization converter stays in considerable stability with the incident angle increasing 60˚ in circular polarization and 30˚ in linear polarization. Moreover, the physical mechanism of multiple resonances is discussed based on surface current distributions and equivalent circuit model. A prototype of the proposed converter is fabricated and measured, and the experiments and simulations are in great agreement. This polarization converter can be employed to manipulate the polarization of the signal in microwave communication.....
  • The deformation behaviors of a droplet on surface of composite insulator can strengthen local electric field, which could finally lead to flashover. Both experiments and numerical simulations for dynamic behaviors of a droplet on the surface of a composite insulator under applied AC voltage are investigated in this paper. Experiments are performed to study the influences of water droplet’s volume and conductivity on the dynamic behaviors. Two critical parameters are proposed to describe the morphological change process of water droplet, and it is shown that the process can be divided into three stages. Moreover, these motion laws are explained by establishing theoretical factors and physical influence models. In addition, we perform computer simulation to study the dynamic behaviors of a water droplet under AC field, and the findings are in good consistency with our experimental results, proving the rationality of the theoretical physical model. It is found that the vibration frequency of droplet changes regularly with at different stages under the AC electric field.....