Latest News



Call-for-Papers for PIER Special Issues

Being an open access on-line journal, PIER gives great prominence to special issues that draw together significant and emerging works to promote key advances on specific topics. The special issues are devoted to timely, relevant, and cutting-edge research and aim to provide a unique platform for researchers interested in selected topics.We are now calling for papers for the following PIER Spe

Upcoming Events


The 43rd PIERS in Hangzhou, CHINA
21 - 25, November 2021
(from Sunday to Thursday)

--- Where microwave and lightwave communities meet

Hybrid PIERS: Onsite + Web Access

Important Dates:

  • 20 June, 2021 --- Abstract Submission Deadline
  • 20 August, 2021 --- Pre-registration Deadline
  • 25 August, 2021 --- Full-length Paper Submission Deadline
  • 20 September, 2021 --- Preliminary Program
  • 5 October, 2021 --- Advance Program
  • 20 October, 2021 --- Final Program

Quick Links:

To organize a Special Session, please fill out this
PIERS Survey Form.

Online Abstract Submission


Join Us in this Harvest Season - Onsite + Web Access

Night West Lake - PIERS 2021 Hangzhou, CHINA

PIERS 2021, Hangzhou, CHINA

Late autumn - PIERS 2021 Hangzhou, CHINA

West Lake - Hangzhou, CHINA

About PIER


Progress In Electromagnetics Research

PIER Journals are a family of journals supported by the PhotonIcs and Electromagnetics Research Symposium (PIERS), which has become a major symposium in the area related to photonics and electromagnetics. The scope includes all aspects of electromagnetic theory plus its wide-ranging applications. Hence, it includes topics motivated by mathematics, sciences as well as topics inspired by advanced technologies. The spectrum ranges from very low frequencies to ultra-violet frequencies. The length scale spans from nanometer length scale to kilometer length scale. The physics covers the classical regime as well as the quantum regime.

Hot Topics


Newest Articles



ISSN: 1070-4698

Few-Cycle Electromagnetic Pulses with Finite Energy and Bounded Angular Momentum: Analysis of the Skyrmionic Texture at Focal Plane

Luis Carretero, Pablo Acebal, and Salvador Blaya

Exact solutions to Maxwell equations with topological charge based on a modification to Brittingham's single cycle pulses are analyzed demonstrating that they have finite values of energy, momentum and angular momentum. Moreover, the ratio of angular momentum to energy is bounded due to the dependence of the mean frequency on topological charge. We have also analyzed the skyrmionic texture of the electric and magnetic fields showing that it is possible to obtain skyrmionic numbers higher than one for the magnetic field by means of a superposition of pulses with different topological charges and null skyrmionic number.....

  • ⋅A p-adaptive discontinuous Galerkin time-domain method is developed to obtain high-order solutions to electromagnetic scattering problems. A novel feature of the proposed method is the use of divergence error to drive the p-adaptive method. The nature of divergence error is explored, and that it is a direct consequence of the act of discretization is established. Its relation with relative truncation error is formed which enables the use of divergence error as an inexpensive proxy to truncation error. Divergence error is used as an indicator to dynamically identify and assign spatial operators of varying accuracy to substantial regions in the computational domain. This results in a reduced computational cost compared to a comparable discontinuous Galerkin time-domain solution using uniform degree piecewise polynomial bases throughout. Numerical results are presented to show performance of the proposed divergence error based p-adaptive solutions. It is shown that an accuracy similar to that of uniformly higher order solutions is obtained in terms of the scattering width, using fewer degrees of freedom. ....
  • 2022-09-29

    Research on the Built-in Tangential and Radial Combined-Pole Permanent Magnet Hub Drive Motor for Electric Vehicles

    Shilong Yan, Xueyi Zhang, Zhidong Gao, Mingjun Xu, Lei Wang, Yufeng Zhang, Wenchao Zhang, and Kai Geng
    In order to solve the problems of high THD (total harmonic distortion) of air-gap magnetic density, large cogging torque and low power density of permanent magnet (PM) hub motor, a built-in tangential and radial PM combined-pole hub motor is proposed in this paper. The magnetic field provided by tangential PM is the main magnetic field, and the magnetic field provided by radial PM plays an auxiliary role in regulation, which can effectively improve the air-gap magnetic density of the motor, reduce the THD of back electromotive force (EMF), and weaken the peak value of cogging torque. Based on the equivalent magnetic circuit method, this paper analyzes the magnetic circuit of the motor, deduces the leakage magnetic flux coefficient, and reduces the leakage magnetic flux by optimizing the structure of the motor. Finally, the prototype is manufactured and tested to verify the effectiveness of finite element analysis. The results show that the designed PM hub drive motor has low THD of back EMF and good sinusoidality of waveform under no-load condition, and good output performance.....
  • 2022-09-23

    Millimeter Wave Image Super Resolution Using Multichannel Depth Convolution Neural Network

    Ruyue Peng, Jianfei Chen, Zhao Liu, and Zhimin Guo
    Benefit from the high resolution, penetrating and all weather advantages of millimeter-wave (MMW) imaging, MMW imaging plays an important role in remote sensing, security inspection, navigation, etc. Among the MMW imaging systems, synthetic aperture imaging radiometer (SAIR) utilizes aperture synthetic technology to achieve higher imaging resolution, but the perception information is insufficient, resulting in poor image quality. In order to improve the image quality of passive SAIR MMW image effectively, we propose a novel multichannel depth convolutional neural network (MDCNN) in this paper. Aiming at the characteristics of original MMW images with more noise in low-frequency information and less features in high-frequency information, wavelet transform is incorporated into the MDCNN to obtain the high and low frequency components firstly. Then, dense residual block and skip connection technology are adopted to denoise and enhance target information in the four independent channels respectively. Finally, high quality MMW images are synthesized by inverse wavelet transform. The simulation results show that the reconstructed images of MDCNN have better image quality (such as image contour and texture details) than other deep learning-based methods.....
  • 2022-09-28

    A Novel Fractal Arrow-Shaped mmWave Flexible Antenna for IoT and 5G Communication Systems

    Nazih Khaddaj Mallat, Alireza Jafarieh, Hamidreza Noorollahi, and Mahdi Nouri
    In this paper, a novel flexible antenna for the new ISM band is proposed. A multi-objective optimization based on DDEA-SE is performed to optimize the antenna bandwidth and gain. The proposed optimized antenna has a 4 dB maximum realized gain and 50% maximum radiation efficiency on the ISM band. A fractal structure is used in this design to achieve a multi-band antenna. The bandwidth of this antenna covers several 5G bands. This multi-band antenna is fabricated on a cotton substrate. This antenna has a small dimension which makes it suitable for 5G applications. The bending tests are performed, and both simulation and measurement results show the good performance of the proposed antenna.....