Latest News

more

2021-01-01

Call-for-Papers for PIER Special Issues

Being an open access on-line journal, PIER gives great prominence to special issues that draw together significant and emerging works to promote key advances on specific topics. The special issues are devoted to timely, relevant, and cutting-edge research and aim to provide a unique platform for researchers interested in selected topics.We are now calling for papers for the following PIER Spe

Upcoming Events

more

The 43rd PIERS in Hangzhou, CHINA
21 - 25, November 2021
(from Sunday to Thursday)

--- Where microwave and lightwave communities meet

Hybrid PIERS: Onsite + Web Access

Important Dates:

  • 20 June, 2021 --- Abstract Submission Deadline
  • 20 August, 2021 --- Pre-registration Deadline
  • 25 August, 2021 --- Full-length Paper Submission Deadline
  • 20 September, 2021 --- Preliminary Program
  • 5 October, 2021 --- Advance Program
  • 20 October, 2021 --- Final Program

Quick Links:

To organize a Special Session, please fill out this
PIERS Survey Form.

Online Abstract Submission

 

Join Us in this Harvest Season - Onsite + Web Access

Night West Lake - PIERS 2021 Hangzhou, CHINA

PIERS 2021, Hangzhou, CHINA

Late autumn - PIERS 2021 Hangzhou, CHINA

West Lake - Hangzhou, CHINA

About PIER

more

Progress In Electromagnetics Research

PIER Journals are a family of journals supported by the PhotonIcs and Electromagnetics Research Symposium (PIERS), which has become a major symposium in the area related to photonics and electromagnetics. The scope includes all aspects of electromagnetic theory plus its wide-ranging applications. Hence, it includes topics motivated by mathematics, sciences as well as topics inspired by advanced technologies. The spectrum ranges from very low frequencies to ultra-violet frequencies. The length scale spans from nanometer length scale to kilometer length scale. The physics covers the classical regime as well as the quantum regime.

Hot Topics

more

Newest Articles

more

PIER

ISSN: 1070-4698
2021-06-03

Surface Electromagnetic Waves at Gradual Interfaces Between Lossy Media

Igor I. Smolyaninov

A low loss propagating electromagnetic wave is shown to exist at a gradual interface between two lossy conductive media. Such a surface wave may be guided by a seafloor-seawater interface and it may be used in radio communication and imaging underwater. It should allow communication distances of the order of 500 m at 10 kHz along a sandy seabed. Similar surface waves may also be guided by various tissue boundaries inside a human body. For example, such surface wave solutions may exist at planar interfaces between skull bones and grey matter inside a human head at 6 GHz.....

  • 2021-07-13

    Compact 2 × 2 Automotive MIMO Antenna Systems for Sub-6 GHz 5G and V2X Communications

    Ahmad Yacoub, Mohamed Khalifa, and Daniel N. Aloi
    Various multiple-input multiple-output (MIMO) antenna systems for vehicles are presented in this paper usingtwo uniquely designed elements: low profile wideband Planar Inverted-F antenna (PIFA), and compact wideband monopole for automotive application in the sub-6 GHz 5G systems and Vehicle-to-Everything (V2X) communications that operate on the frequency range from 617 MHz to 6 GHz. This paper presents different MIMO configurations to be used in a low-profile housing or a shark fin style on the vehicle's roof. Each MIMO system achievesa satisfactory MIMO performance across the whole band withsuitable physical dimensions. The envelope correlation coefficient (ECC) and diversity gain (DG) are calculated using MATLAB in each MIMO configuration as they represent the two key factors in the MIMO performance. Simulation results are presented along with measured data on 1-meter rolled-edge ground plane (GND) and on vehicle's roof from properly cut metal sheet prototypes. The results are discussed in terms of VSWR, passive isolation between elements, combined radiation patterns, port-efficiencies, ECC and DG.....
  • 2021-07-21

    Multilayer Grid Polarizers: Simulations for Millimeter Waves

    Vladimir Borisovich Yurchenko, Mehmet Ciydem, Marcin Gradziel, and Sencer Koc
    Multilayer grid polarizers for millimeter waves produced with photolithographic technology have been simulated. Polarizers have spectral bands of enhanced performance where polarization extinction ratio in decibels grows in proportion to the number of layers. Full-wave modeling is compared with three asymptotic models for subwavelength gratings using adjusted grating parameters. Random variations of interlayer spacings reduce the enhancement of polarizing performance, yet the latter continues to grow in proportion to the number of layers. Broadband signal detection is also considered.....
  • This paper proposes a zero-forcing beamforming design for the energy efficiency optimization of the magnetic resonance based wireless power transfer system with multiple transmitter coils, which aims to secure energy transfer control. A scheme based on beamforming technology is proposed to prevent unauthorized users from accessing the system, which builds a beamforming model consisting of multiple transmitter coils, a target receiver, and a non-target receiver to simulate the actual system. Then to optimize the proposed system's energy efficiency while constraining the target receiver's energy, spectral efficiency, and transmitter's power, the proposed beamforming model is constructed as an optimization problem. To solve this non-convex nonlinear fractional programming problem, the Dinkelbach algorithm is used for fractional conversion, and then the zero-forcing constraints are equivalently replaced. Finally, two solutions of the nonlinear solution and closed-form solution are derived. The simulation results show that the energy efficiency optimization strategies of zero-forcing beamforming with the two derived solutions can satisfy the design requirements.....
  • 2021-07-21

    An Artificial Dielectric Material to Enhance Patch Antenna Gain

    Yangjun Zhang and Yoshikazu Fujita
    Artificial material has the feature to realize a controllable effective permittivity, which leads to many potential applications in the RF and optical fields. In this study, an artificial material is proposed for a Resonant Cavity antenna (RCA) to enhance the gain of patch antenna. The artificial material is made of a lot of circular conducting patches in a uniform size hosted in an FR-4 substrate. The fabricated artificial material is in a square shape with a length and width of 52 mm × 52 mm and a thickness of 1.2 mm. The artificial material is set in front of a patch antenna to construct an RCA, and the gain property of the proposed RCA is evaluated with the simulation and measurement methods. The results by both the simulation and measurement methods prove that the gain is enhanced by the proposed artificial material. The maximum gains are 14.5 dBi in simulation and 12.8 dBi in measurement at 15 GHz for the RCA with on slab of the artificial material. The gain is improved compared to the gain of a patch antenna without the artificial material.....