Vol. 121
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-06-18
PIER Letters
Vol. 121, 27-32, 2024
download: 106
Controlling the Polarization Conversion and Asymmetric Transmission Properties of a Metasurface by Controlling the Chirality of Its Unit Cell
Sayan Sarkar and Bhaskar Gupta
Chirality (mirror asymmetry) of the unit cell ensures the phenomenon of polarization conversion in a metamaterial/metasurface. In this communication, we control the polarization conversion and asymmetric transmission properties of a metasurface by controlling the chirality of its unit cells. Radio Frequency PIN diode switches are used to control the chirality. When the switches are turned OFF, the unit cells become chiral, and the metasurface successfully exhibits polarization conversion as well as asymmetric transmission for linearly polarized incident waves. When the switches are turned ON, the unit cells become achiral and lose both the above properties. The polarization conversion switching phenomenon is also observed for circularly polarized incident waves. A simple ultrathin metasurface is designed and fabricated to demonstrate these properties.
Controlling the Polarization Conversion and Asymmetric Transmission Properties of a Metasurface by Controlling the Chirality of Its Unit Cell
2024-06-16
PIER Letters
Vol. 121, 19-25, 2024
download: 102
Common-Mode Voltage Analyses for Space Vector PWM Based on Double Fourier Series
Jian Zheng , Cunxing Peng , Liangshuai Lin and Kaihui Zhao
Space vector pulse width modulation (SVPWM) is widely used in three-phase inverters. As the performance requirements of inverters increase, there is a demand to suppress common-mode voltages (CMVs) generated by SVPWM. In order to suppress the CMVs, it is necessary to mathematically analyze the CMVs. By using a mathematical analysis method based on double Fourier series, general expressions of CMV harmonic amplitudes and spectra are obtained for seven-segment SVPWM and five-segment SVPWM. Comparative analyses on the CMV general expressions are performed for the two SVPWMs, and the CMV harmonics characteristics for the two SVPWMs are summarized. Simulations are carried out in an inverter-driven permanent magnet motor system, and simulation results are in good agreement with calculation ones, which verifies the correctness and validity of the mathematical analysis. Based on these analyses, a more in-depth research can be conducted on the CMV suppression.
Common-mode Voltage Analyses for Space Vector PWM Based on Double Fourier Series
2024-06-15
PIER Letters
Vol. 121, 13-18, 2024
download: 92
Analysis and Optimization on Weight Accuracy of the Adaptive Interference Cancellation
Yunshuo Zhang , Songhu Ge , Huanding Qin , Hongbo Liu , Zhongpu Cui and Jin Meng
Weight and reference signal are utilized in adaptive interference cancellation (AIC) for vector weighting to generate the signal with equal amplitude and opposite phase to the interference signal. Weight accuracy becomes the core factor to determine the performance of the AIC. In this letter, we analyze the influence of the weight accuracy on interference suppression performance, propose the quantitative characterization method of the weight accuracy with weight noise as an indicator, study the performance and influencing factors of the weight accuracy, and propose the optimization design method. The characteristics of weight accuracy in interference cancellation are verified by theoretical simulation analysis. This work fills in the blank of weight accuracy analysis and has solid theoretical value for exploring the capability boundary of the AIC.
Analysis and Optimization on Weight Accuracy of the Adaptive Interference Cancellation
2024-06-15
PIER Letters
Vol. 121, 7-12, 2024
download: 84
Uncertainty Analysis Method for EMC Simulation Based on the Complex Number Method of Moments
Jinjun Bai , Bing Hu , Haichuan Cao and Jianshu Zhou
The Method of Moments (MoM) is a non-embedded uncertainty analysis method that has been widely used in Electromagnetic Compatibility (EMC) simulations in recent years due to its two major advantages of high computational efficiency and immunity from dimensional disaster. A random variable sensitivity calculation method based on the Complex Number Method of Moments (CN-MoM) is proposed in this paper to improve the accuracy of the MoM in standard deviation prediction and thereby enhance the credibility of EMC simulation uncertainty analysis results. In the parallel cable crosstalk prediction example in the literature, the result of the Monte Carlo Method (MCM) is used as the standard, and the accuracy of the new method proposed in this paper is quantitatively verified using the Feature Selective Validation (FSV) method. Compared with the MoM, the proposed method can significantly improve the calculation accuracy of the standard deviation results without sacrificing simulation efficiency.
Uncertainty Analysis Method for EMC Simulation Based on the Complex Number Method of Moments
2024-06-14
PIER Letters
Vol. 121, 1-6, 2024
download: 129
Design and Implementation of a Millimeter Wave Active Antenna for UAV Communications
Ning Liu , Guanfeng Cui , Guotao Shang , Ruiliang Song and Bo Zhang
The millimeter wave communication technology used for drones could combine the advantages of drones and millimeter waves, providing high-speed data transmission and wide area network coverage capabilities, and has broad application prospects in military and civilian communication systems. Millimeter wave active antennas have the advantages of miniaturization, high frequency band, and flexible shaping, which is of great significance for ensuring the high-speed dynamic communication ability of drone platforms. In this paper, a millimeter wave active antenna suitable for unmanned aerial vehicles (UAVs) is designed and verified, operating in 24.75-27.5 GHz and adopting Antenna in Package (AiP) design. Frequency band test and communication performance test is conducted. To open and close the RF channels, the antenna's operating frequency range can be shown in the vector network analyzer which meets the design frequency band 24.75-27.5 GHz requirements. By loading 5G millimeter wave standard signals, the antenna can achieve real-time demodulation of 100 MHz, 256 QAM signals. The test shows that the system can meet the requirements of beam tracking and real-time information transmission during high-speed dynamic flight of UAVs. It has broad application prospects in UAV communication systems.
Design and Implementation of a Millimeter Wave Active Antenna for UAV Communications