A Wideband and Dual Frequency Three-Dimensional Transition-Fed Circular Patch Antenna for Indoor Base Station Application
You-Huo Huang
,
Qi-Zhong Liu
and
Shi-Gang Zhou
The design and performance of a stacked patch antenna for wideband and dual-frequency operation are presented in this paper. The proposed antenna consists of a three dimensional (3D) circular transition-fed patch that is excited by a coaxial probe. By introducing a regular patch and a ring patch above the 3D circular transition-fed patch, good input impedance matching has been achieved over two frequency bands. The lower band possesses an impedance bandwidth (VSWR < 2) of 22.8% (0.775 to 0.975 GHz) and a peak gain of 5.2 dBi, while the upper band has an impedance bandwidth (VSWR < 2) of 65.8% (1.425 to 2.825 GHz) and a peak gain of 7.4 dBi. Other than the wideband and dual-band operation features, this antenna also has a beam tilted downward with a broadside beam pattern on the horizontal plane. Therefore, this antenna is very suitable for the indoor base station that is required to service several wireless communication systems, included CDMA800, GSM900, 3G, PCS, UMTS, BLUETOOTH and WLAN, by a single antenna.