Vol. 11
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-09-21
Controlling the Frequency of Simultaneous Switching Noise Suppression by Using Embedded Dielectric Resonators in High-Impedance Surface Structure
By
Progress In Electromagnetics Research Letters, Vol. 11, 149-158, 2009
Abstract
This work presents a novel design for high-impedance surface (HIS) embedded dielectric resonator (DR) structures to efficiently control bandwidth of suppressing simultaneous switching noise (SSN) in high speed digital printed circuit boards (PCBs). The proposed structure is designed by periodically embedding high dielectric constant materials into the substrate between a continuous power plane and a middle patch. A conventional HIS structure has only one resonance frequency to produce stopband while the proposed structure has two resonances to widen the suppression bandwidth. The -30 dB stopband of the proposed structure is about two times wider than that of a conventional HIS structure. The excellent SSN suppression behavior was verified by measurements and simulations.
Citation
Chin-Sheng Chang, Jian-Yi Li, Wen-Jeng Lin, Mau-Phon Houng, Lih-Shan Chen, and Ding-Bing Lin, "Controlling the Frequency of Simultaneous Switching Noise Suppression by Using Embedded Dielectric Resonators in High-Impedance Surface Structure," Progress In Electromagnetics Research Letters, Vol. 11, 149-158, 2009.
doi:10.2528/PIERL09082406
References

1. Peterson, G. W., J. L. Prince, and K. L. Virga, "Investigation of power/ground plane resonance reduction using lumped RC elements," Proc. 2000 Elec. Comp. & Tech. Conference, Vol. 42, No. 3, 769-774, 2000.

2. Wu, T. L., Y. H. Lin, T. K. Wang, C. C. Wang, and S. T. Chen, "Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 9, 2935-2942, Sep. 2005.
doi:10.1109/TMTT.2005.854248

3. Qin, J. and O. M. Ramahi, "Ultra-wideband mitigation of simultaneous switching noise using novel planar electromagnetic bandgap structures," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 9, 487-489, Sep. 2006.
doi:10.1109/LMWC.2006.880713

4. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

5. Rogers, S. D., "Electromagnetic-bandgap layers for broad-band suppression of TEM modes in power planes," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 8, 2495-2505, Aug. 2005.
doi:10.1109/TMTT.2005.852776

6. Kamgaing, T. and O. M. Ramahi, "Inductance-enhanced high-impedance surfaces for broadband simultaneous switching noise mitigation in power planes," Proceedings, IEEE International Microwave Symposium, 2165-2168, Philadelphia, PA, June 8-13, 2003.

7. Shahparnia, S. and O. M. Ramahi, "A simple and effective model for electromagnetic bandgap structures embedded in printed circuit boards," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, 621-623, Oct. 2005.
doi:10.1109/LMWC.2005.856695

8. Shahparnia, S. and O. M. Ramahi, "Simultaneous switching noise mitigation in PCB using cascaded high-impedance surfaces," Electron. Lett., Vol. 40, No. 2, 98-100, Jan. 2004.
doi:10.1049/el:20040077

9. Zhang, M. S., Y. S. Li, C. Jia, L. P. Li, and J. Pan, "A double-surface electromagnetic bandgap structure with one surface embedded in power plane for ultra-wideband SSN suppression ," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 10, 706-708, Oct. 2007.
doi:10.1109/LMWC.2007.905601

10. Park, J. A., C. W. Lu, K. M. Chua, L. L. Wai, J. Lee, and J. Kim, "Double-stacked EBG structure for wideband suppression of simultaneous switching noise in LTCC-based SiP applications," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 9, 481-483, Sep. 2006.
doi:10.1109/LMWC.2006.880719

11. Wu, T. L. and S. T. Chen, "A photonic crystal power/ground layer for eliminating simultaneously switching noise in high-speed circuit," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 8, 3398-3406, Aug. 2006.
doi:10.1109/TMTT.2006.879132

12. Chang, C.-S., D.-B. Lin, K.-C. Hung, I.-T. Tang, and M.-P. Houng, "Simultaneous switching noise mitigation capability with low parasitic effect using aperoidic high-impedance surface structure ," Progress In Electromagnetics Research Letter, Vol. 4, 149-158, 2008.
doi:10.2528/PIERL08082902

13. Chang, C.-S., M.-P. Houng, N.-F. Wang, and L.-S. Chen, "An embedded isolation moat structures with stopband and low parasitic effect for elimination simultaneous switching noise," Progress In Electromagnetics Research Letter, Vol. 6, 91-98, 2009.
doi:10.2528/PIERL08122305