Vol. 181
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Metamaterials, Metasurfaces, and Plasmonics
2024-12-21
PIER
Vol. 181, 35-41, 2024
download: 9
Observation of Polarization-Maintaining Near-Field Directionality
Tong Cai, Yuhan Zhong, Dan Liu, Hailin Huang, Dengpan Wang, Yi Yang, Hongsheng Chen and Xiao Lin
Directional and highly-efficient excitation of guided waves is closely related to the on-chip information processing and is of fundamental importance to plasmonics, nanophotonics, and chiral quantum optics. However, during the directional coupling between propagating waves and guided waves, there is a loss of information about the incident polarization state. It remains elusive and challenging to preserve the incident polarization information in the near-field directionality. Here we experimentally demonstrate polarization-maintaining and polarization-dependent near-field directionality at a microwave frequency of 9.5 GHz by exploiting a reflection-free, anisotropic, and gradient metasurface. The s- and p-polarized guided waves are excited only by the s- and p-polarized components of incident waves, respectively, and they propagate predominantly to opposite designated directions. Remarkably, the measured coupling efficiency between propagating waves and guided waves exceeds 85% for arbitrary incident polarization states. Our work thus reveals a promising route to directly and efficiently convert the polarization-encoded photon qubits to polarization-encoded guided waves, a process that is highly sought after in the context of optical network and plasmonic circuitry.
Observation of Polarization-maintaining Near-field Directionality
2024-12-21
PIER
Vol. 181, 21-33, 2024
download: 41
Dual Non-Diffractive Beam Generation via Spin-and-Frequency Multiplexed All-Dielectric Metasurfaces
Chunyu Liu, Yanfeng Li, Fan Huang, Guanghong Xu, Quan Li, Shuang Wang, Quan Xu, Jianqiang Gu and Jiaguang Han
Metasurfaces offer remarkable capabilities for manipulating electromagnetic waves and by incorporating multiplexing techniques can significantly increase the versatility of design possibilities. Here, we designed and experimentally demonstrated a series of dual non-diffractive beam generators for terahertz radiation based on all-dielectric metasurfaces. These generators could produce switchable Bessel beams and abruptly autofocusing beams depending on the spin and frequency of the incident terahertz waves. In addition, by further applying appropriate phase gradients in the design, these non-diffractive beams could be deflected in specified directions. It is also possible to simultaneously generate multiple non-diffractive beams with different properties. The generated non-diffractive beams were measured with near-field scanning terahertz microscopy, and the results agreed well with simulations. We believe that these metasurface-based beam generators hold tremendous potential in terahertz imaging, communications, non-destructive evaluation, and many other applications.
Dual Non-diffractive Beam Generation via Spin-and-frequency Multiplexed All-dielectric Metasurfaces
2024-12-20
PIER
Vol. 181, 1-8, 2024
download: 22
Reflectionless Refraction via One-Dimensional Ghost Polaritons in Planar Junctions of Hyperbolic Metasurfaces
Zhiwei He, Huaping Wang, Zhenyang Cui, Sihao Xia, Xingyu Tang, Bin Zheng, Xiao Lin, Lian Shen, Hongsheng Chen and Yingjie Wu
Polaritons, part-light−part-matter waves, enable the control of light at the subwavelength scale. Interfacial behaviors play a critical role in polariton manipulation, with negative refraction showing promise for high-resolution focusing. However, reflections pose a substantial challenge, especially in applications where backscattering is unwanted. To address this issue, we propose a structure composed of planar junctions of metasurfaces, each supporting in-plane hyperbolic polaritons with misaligned optical axes. We demonstrate that when the asymptote of the incident hyperbolic isofrequency contours (IFCs) aligns with the interface normal, the reflected waves transform into highly lossy one-dimensional ghost polaritons (HL-1DGPs), channeling energy near the interface. The refracted waves also convert into HL-1DGPs when the outgoing IFC asymptote aligns with the interface normal. Leveraging these phenomena, we design polaritonic lenses and absorbers with greatly reduced reflection. These insights into the interfacial behaviors of hyperbolic polaritons under symmetry breaking have implications for creating polaritonic elements beyond the diffraction limit.
Reflectionless Refraction via One-dimensional Ghost Polaritons in Planar Junctions of Hyperbolic Metasurfaces