Vol. 50
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-10-12
PIER
Vol. 50, 299-335, 2005
download: 650
A Finite-Difference Time-Domain (FDTD) Software for Simulation of Printed Circuit Board (PCB) Assembly
Fabian Kung Wai Lee and Hean-Teik Chuah
This paper describes the design of a three-dimensional (3D) finite-difference time-domain (FDTD) simulation software for printed circuit board (PCB) modeling. The flow, the dynamics and important algorithms of the FDTD simulation engine will be shown. The software is developed using ob ject-oriented programming (OOP) approach, to enable code reuse and ease of upgrade in future. The paper begins by looking at how a 3D PCB structure is created using cubes, and proceed to show the inclusion of various lumped components such as resistors, capacitor, inductor and active semiconductor components into the model. The architecture of the FDTD simulation program is then carefully explained. Finally a few sample simulation examples using the software will be illustrated at the end of the paper.
A FINITE-DIFFERENCE TIME-DOMAIN (FDTD) SOFTWARE FOR SIMULATION OF PRINTED CIRCUIT BOARD (PCB) ASSEMBLY
2004-10-12
PIER
Vol. 50, 279-298, 2005
download: 295
The Masar Project: Design and Development
Voon Koo , Yee Kit Chan , Gobi Vetharatnam , Tien Sze Lim , Boon-Kuan Chung and Hean-Teik Chuah
In 2002, the MASAR (Malaysian Airborne Synthetic Aperture Radar) pro ject was initiated at Multimedia University (MMU), in collaboration with the Malaysian Centre for Remote Sensing (MACRES). The main ob jective of this pro ject is to construct an instrument for earth resource monitoring in Malaysia. The proposed SAR system is a C-band, single polarization, linear FM radar. This paper outlines the ma jor design issues and considerations for MASAR. In particular, the design and construction of the microwave system, microstrip antenna, and a high-speed data recording system are described. The SAR processing algorithm which incorporates motion compensation capability for high resolution image generation is also outlined.
THE MASAR PROJECT: DESIGN AND DEVELOPMENT
2004-10-12
PIER
Vol. 50, 267-278, 2005
download: 439
Determination of Capacitance and Conductance Matrices of Lossy Shielded Coupled Microstrip Transmission Lines
Mohammad Khalaj-Amirhosseini
Laplace's equation is solved analytically for lossy shielded coupled microstrip transmission lines. The solution is represented in fourier series expression and is being used to determine the capacitance and conductance matrices of the structure. The method is examined using some examples and then some results are obtained.
DETERMINATION OF CAPACITANCE AND CONDUCTANCE MATRICES OF LOSSY SHIELDED COUPLED MICROSTRIP TRANSMISSION LINES
2004-10-12
PIER
Vol. 50, 231-266, 2005
download: 313
Optical Soliton Perturbation with Non-Kerr Law Nonlinearities
Anjan Biswas
This paper studies solitons and its perturbations that is governed by the generalized nonlinear Schrödinger's equation with non-Kerr law nonlinearity. The quasi-stationarity is applied to the non-Kerr law case and an approximate solution is obtained. A few special cases of the non-Kerr law nonlinearity are considered, as examples, with the nonlinear damping type perturbation.
OPTICAL SOLITON PERTURBATION WITH NON-KERR LAW NONLINEARITIES
2004-10-12
PIER
Vol. 50, 209-229, 2005
download: 397
A Complete FDTD Simulation of a Real GPR Antenna System Operating Above Lossy and Dispersive Grounds
Disala Uduwawala , Martin Norgren , Peter Fuks and Aruna Gunawardena
The finite difference time domain (FDTD) method is used to analyze a practical ground penetrating radar (GPR) antenna system operating above lossy and dispersive grounds. The antenna is of the resistor-loaded bow-tie type and the analysis is made for two known soil types, namely Puerto Rico and San Antonio clay loams. The soil is modeled by a two term Debye model with a static conductivity and it is matched to the mentioned soils by using curve fitting. The FDTD scheme is implemented by the auxiliary differential equation (ADE) method together with the uniaxial perfectly matched layer (UPML) absorbing boundary conditions (ABC). In order to model a real GPR environment, ground surface roughness and soil inhomogeneities are also included. The effect of soil properties on the GPR response and antenna input impedance is presented. Thus the ability to detect buried metal and plastic pipes is investigated.
A COMPLETE FDTD SIMULATION OF A REAL GPR ANTENNA SYSTEM OPERATING ABOVE LOSSY AND DISPERSIVE GROUNDS
2004-10-12
PIER
Vol. 50, 187-208, 2005
download: 254
A Fast Analysis of Scattering from Microstrip Antennas Over a Wide Band
J. Wan and Chang-Hong Liang
An efficient algorithm combining the fast multipole method (FMM) and the characteristic basis function method (CBFM) for analysis of scattering from microstrip antennas over a wide band is introduced in this paper. In the hybrid algorithm, the characteristic basis function method is used to construct the currents on microstrip antennas by using characteristic basis functions (CBFs) which are constructed from the solution vectors at several samples using the singular value decomposition (SVD), thus obviating the need to repeatedly compute using a computational electromagnetic code and repeatedly solve a large method of moments matrix system at each point within the wide band of interest. The fast multipole method is used to obtain the solution vectors at these samples and speed up the matrix-vector product in the characteristic basis function method (CBFM). The resultant hybrid algorithm (FMM-CBFM) eliminates the need to generate and store the usual square impedance matrix and repeatedly use an iterative solver at each point and thus leads to a significant reduction in memory requirement and computational cost. Numerical examples are given to illustrate the accuracy and robustness of this method.
A FAST ANALYSIS OF SCATTERING FROM MICROSTRIP ANTENNAS OVER A WIDE BAND
2004-10-12
PIER
Vol. 50, 163-186, 2005
download: 284
Electromagnetic Field for a Horizontal Electric Dipole Buried Inside a Dielectric Layer Coated High Lossy Half Space
Hong-Qi Zhang , Wei-Yan Pan , Kai Li and Kai-Xian Shen
In this paper, analytical formulas have been derived for the electromagnetic field generated by a horizontal electric dipole inside high lossy half-space coated with a dielectric layer. This problem is corresponding to the electromagnetic field generated by a horizontal antenna in a submarine under an ice layer, or the measurement of the conductivity of the oceanic lithosphere with a horizontal antenna as the source, and a layer of sediment on the sea floor. These formulas obtained for the electromagnetic field can be employed to calculated the total field including the lateral-wave term and the trapped-surface-wave term. Because the wave number of the trapped-surface-wave term is different from that of the lateral-wave term, the interference appears in the total field. Additionally, this paper has presented the approximative formulas for a thin dielectric layer, which can be used for the communication in low frequencies region.
ELECTROMAGNETIC FIELD FOR A HORIZONTAL ELECTRIC DIPOLE BURIED INSIDE A DIELECTRIC LAYER COATED HIGH LOSSY HALF SPACE
2004-10-12
PIER
Vol. 50, 135-161, 2005
download: 237
Formulation of Emission from Relativistic Free Electrons in a Ring Structure for Electro-Optical Applications
Ramin Sabry and Sujeet Chaudhuri
A new scheme for high-speed electro-optical conversions with potential application to data communication is investigated. As the core of investigation, a ring model utilizing relativistic electrons is introduced and the operating characteristics such as coupled wavelengths, gain and power are derived for a circular type of interaction. Advantages are addressed and practical challenges associated with the realization of this conceptual scheme are discussed in light of advances in fundamentally similar relativistic free electron lasing schemes.
FORMULATION OF EMISSION FROM RELATIVISTIC FREE ELECTRONS IN A RING STRUCTURE FOR ELECTRO-OPTICAL APPLICATIONS
2004-10-12
PIER
Vol. 50, 83-134, 2005
download: 242
Theory of Dispersion-Managed Optical Solitons
Anjan Biswas and Swapan Konar
The variational principle is employed to study chirped solitons that propagate through optical fibers and is governed by the dispersion-managed nonlinear Schrödinger's equation. Here, in this paper, the polarization-preserving fibers, birefringent fibers as well as multiple channels have been considered. The study is extended to obtain the adiabatic evolution of soliton parameters in presence of perturbation terms for such fibers. Both Gaussian and super-Gaussian solitons have been considered.
THEORY OF DISPERSION-MANAGED OPTICAL SOLITONS
2004-10-12
PIER
Vol. 50, 61-81, 2005
download: 254
An Efficient Analysis of Large-Scale Periodic Microstrip Antenna Arrays Using the Characteristic Basis Function Method
J. Wan , Juan Lei and Chang-Hong Liang
This paper presents a novel approach for the efficient solution of large-scale periodic microstrip antenna arrays using the newly introduced characteristic basis functions (CBFs) in conjunction with the method of moments (MoM) based on the conventional RWG basis functions. The CBFs are special types of high-level basis functions by incorporating the physics of the problem, defined over domains that encompass a relatively large number of conventional subdomain basis functions. The advantages of applying the CBF method (CBFM) are illustrated by several representative examples, and the computation time as well as the memory requirements are compared to those of conventional direct computation. It is demonstrated that the use of CBFs can result in significant savings in computation time and memory requirements, with little or no compromise in the accuracy of the solution.
AN EFFICIENT ANALYSIS OF LARGE-SCALE PERIODIC MICROSTRIP ANTENNA ARRAYS USING THE CHARACTERISTIC BASIS FUNCTION METHOD
2004-10-12
PIER
Vol. 50, 41-60, 2005
download: 416
Apparent Radar Cross Section of a Large Target Illuminated by a Surface Wave Above the Sea
Vincent Fabbro , Paul Combes and Nicolas Guillet
Classical assesssment of the received power by a radar leads to a decorrelation of many relevant phenomena (i.e. propagation, backscattering), which may introduce modelling errors notably in the presence of large target with respect to the wavelength. To overcome this limitation, a new hybrid approach is proposed. It combines a method of propagation calculation (the parabolic wave equation) with a method of scattering calculation (the EFIE solved by a method of moment approach) and an application of the reciprocity principle (the power coupling factor). Each method constituting the hybrid approach is described; the example of a large cargo is chosen and its apparent RCS is evaluated above the sea at low frequency. The results are discussed, studying the influence of the different parts of the boat on the apparent RCS.
APPARENT RADAR CROSS SECTION OF A LARGE TARGET ILLUMINATED BY A SURFACE WAVE ABOVE THE SEA
2004-10-12
PIER
Vol. 50, 13-39, 2005
download: 319
Coherent Effects in Single Scattering and Random Errors in Antenna Technology
Daniel Sjöberg
Lack of knowledge prevents us from exactly calculating the behavior of electromagnetic fields. We study two extremes in this respect: scattering against randomly distributed particles (no idea of the position or orientation of the scatterers), and random errors in antenna technology (small deviations from what we think are the proper parameters). Random variables are used to model our lack of knowledge, and far field expressions are studied. Using the concept of characteristic functions from probability theory, results for arbitrary probability distributions are obtained. We explain an anomaly in the forward scattering direction in single scattering theory, present simple formulas for the directivity, side lobe level, and beam efficiency for a general array antenna with random errors, and a simple formula for the scattering coefficient from a general frequency selective structure with random errors.
COHERENT EFFECTS IN SINGLE SCATTERING AND RANDOM ERRORS IN ANTENNA TECHNOLOGY
2004-10-12
PIER
Vol. 50, 1-12, 2005
download: 256
Loaded Microstrip Disk Resonator Exhibits Ultra-Low Frequency Resonance
Tapas Chakravarty , Sushim Roy , Salil Sanyal and Asok De
In this paper a novel method of generation of ultra-low resonance in a microstrip disk resonator is presented. The disk resonator is loaded with series L-C circuit across a selective location in the disk via a thin shorting pin. It is shown that in loaded disk resonator, the lowest resonance observed is in VHF range whereas the unloaded disk had a fundamental resonance at 1.76 GHz. This resonance is slightly offset from the series resonant frequency of L-C circuit. and it depends on the disk radius as well. Using IE3D, a commercial MoM solver, the said structure is simulated. The experimental results agree well with the simulated results. A closed form expression for computing the resonant frequency is given.
LOADED MICROSTRIP DISK RESONATOR EXHIBITS ULTRA-LOW FREQUENCY RESONANCE