Vol. 68
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-01-09
PIER
Vol. 68, 339-357, 2007
download: 251
Fast Computational Algoritm for EFIE Applied to Arbitrarily-Shaped Conducting Surfaces
Khalid Fawzy Ahmed Hussein
This work presents a fast computational algorithm that can be used as an alternative to the conventional surface-integral evaluation method included in the electric field integral equation (EFIE) technique when applied to a triangular-patch model for conducting surfaces of arbitrary-shape. Instead of evaluating the integrals by transformation to normalized area coordinates, they are evaluated directly in the Cartesien coordinates by dividing each triangular patch to a finite number of small triangles. In this way, a large number of double integrals is replaced by a smaller number of finite summations, which considerably reduces the time required to get the current distribution on the conducting surface without affecting the accuracy of the results. The proposed method is applied to flat and curved surfaces of different categories including open surfaces possessing edges, closed surfaces enclosing cavities and cavity-backed apertures. The accuracy of the proposed computations is realized in all of the above cases when the obtained results are compared with those obtained using the area coordinates method as well as when compared with some published results.
FAST COMPUTATIONAL ALGORITM FOR EFIE APPLIED TO ARBITRARILY-SHAPED CONDUCTING SURFACES
2007-01-09
PIER
Vol. 68, 317-337, 2007
download: 255
Simultaneous Time-Frequency Modeling of Ultra-Wideband Antennas by Two-Dimensional Hermite Processing
Gaetano Marrocco , Marzia Migliorelli and Matte Ciattaglia
This paper proposes an approximate space-time-frequency field representation for directive Ultra-wideband antennas useful to be introduced into a system-level evaluation tool. Based on the observation that the very near field collected on a plane close to the antenna exhibits a compact support, such a field is processed in the time domain by the two-dimensional Hermite transform. This approach permits to simultaneously express the antenna impulse response and the transfer function by semi-analytical formulas. The theory is demonstrated by numerical examples which highlights that good representations of complex antennas can be achieved by a small set of associate Hermite functions.
SIMULTANEOUS TIME-FREQUENCY MODELING OF ULTRA-WIDEBAND ANTENNAS BY TWO-DIMENSIONAL HERMITE PROCESSING
2006-11-17
PIER
Vol. 68, 297-315, 2007
download: 236
Analysis of V Transmission Lines Response to External Electromagnetic Fields
Ahmad Cheldavi and Payam Nayeri
In the present paper the response of V transmission line to electromagnetic illumination has been obtained. Also in order to determine the VTL frequency operation band for both TE and TM modes a Gaussian pulse source has been applied to the structure. The VTL structure has received considerable attention in high frequency and microwave IC packaging. The purpose of this study is to determine high frequency design considerations in order to reduce the effects of electromagnetic interference (EMI) on the VTL structure and maintain the desired performance. It was observed that the effect of incident EM waves on the V lines performance is considerably lower than conventional microstrips, however the V lines are more sensitive to sources at close proximity. In addition, although the V lines show lower dispersion at higher frequencies, their frequency operation band is limited by a resonance like behavior which is directly related to the V groove dimensions. The full wave analysis is carried out using the Yee-cell based 2 Dimensional Finite Difference Time Domain method (2D-FDTD), while enforcing a very stable and efficient mesh truncation technique.
ANALYSIS OF V TRANSMISSION LINES RESPONSE TO EXTERNAL ELECTROMAGNETIC FIELDS
2006-11-17
PIER
Vol. 68, 281-296, 2007
download: 419
A Comprehensive Performance Study of Circular and Hexagonal Array Geometreis in the LMS Algorithem for Smart Antenna Applications
Farhad Gozasht , Gholamreza R. Dadashzadeh and Saeid Nikmhr
Space division multiple access (SDMA) is a promising can- didate for improving channel capacity in future wireless communication systems. Considering that discrimination performance of the user in the spatial domain depends on the array arrangement, and as a result the optimum element arrangement for SDMA should be defined, beam- forming play a very important role providing fundamental theory of design procedure. However the pattern of antenna array is determined by array geometry. Two-dimensional (2-D) spatial filters that can be implemented by microstrip technology are capable of filtering the re- ceived signal in the angular domain as well as the frequency domain. This paper focuses on various geometries of eight and nine elements antenna arrays using circularly patch elements as well as hexagonal ar- ray with seven elements. The network throughput is further analyzed to determine if using a fully adaptive pattern (LMS algorithm gener- ated pattern) results in a higher throughput with or without presence of mutual coupling effects.
A COMPREHENSIVE PERFORMANCE STUDY OF CIRCULAR AND HEXAGONAL ARRAY GEOMETREIS IN THE LMS ALGORITHEM FOR SMART ANTENNA APPLICATIONS
2006-10-26
PIER
Vol. 68, 261-279, 2007
download: 365
Oblique Incidence Plane Wave Scattering from an Array of Circular Dielectric Cylinders
Bassem Henin , Atef Elsherbeni and Mohamed Al Sharkawy
A rigorous semi-analytical solution is presented for electromagnetic scattering from an array of circular cylinders due to an obliquely incident plane wave. The cylinders are illuminated by either TMz or TEz incident plane wave. The solution is based on the application of the boundary conditions on the surface of each cylinder in terms of the local coordinate system of each individual cylinder. The principle of equal volume model is used to represent cylindrical cross-sections by an array of circular cylinders for both dielectric and conductor cases in order to proof the validity of the presented technique.
OBLIQUE INCIDENCE PLANE WAVE SCATTERING FROM AN ARRAY OF CIRCULAR DIELECTRIC CYLINDERS
2006-10-10
PIER
Vol. 68, 247-259, 2007
download: 823
Phase-Only and Amplitude-Phase Only Synthesis of Dual-Beam Pattern Linear Antenna Arrays Using Floating-Point Genetic Algorithms
Gautam Mahanti , Ajay Chakraborty and Sushrut Das
In this paper, we present a comparison study between phase-only and amplitude-phase synthesis of symmetrical dual-pattern linear antenna arrays using floating-point or real-valued genetic algorithms (GA). Examples include a sum pattern and a sector beam pattern. In the former, phase is only optimized with predetermined Gaussian amplitude distribution of fixed dynamic range ratio (|amax / amin|) and in the latter, both are optimized with less dynamic range ratio than the former and yet share a common amplitude distribution.
PHASE-ONLY AND AMPLITUDE-PHASE ONLY SYNTHESIS OF DUAL-BEAM PATTERN LINEAR ANTENNA ARRAYS USING FLOATING-POINT GENETIC ALGORITHMS
2006-09-17
PIER
Vol. 68, 229-246, 2007
download: 426
An Efficient Modal FDTD for Absorbing Boundary Conditions and Incident Wave Generator in Waveguide Structures
Shuiping Luo and Zhizhang (David) Chen
When the finite-difference time-domain method is used to compute waveguide structures, incident waves are needed for calculating electrical parameters (e.g., the scattering parameters), and effective absorbing boundary conditions are required for terminating open waveguide structures. The incident waves are conventionally obtained with inefficient three-dimensional (3D) simulations of long uniform structures, while the absorbing boundary conditions reported so far do not perform well at or below cut-off frequencies. To address the problems, we propose a novel one-dimensional (1D) finite- difference time-domain method in this paper. Unlike the other methods developed so far, the proposed method is derived from the finite-difference time-domain formulation, and therefore has the same numerical characteristics as that of the finite-difference time-domain method. As a result, when used to obtain an incident wave, it produces results almost identical to those produced by the conventional finite- difference time-domain method except computer rounding-off errors. When used as the absorbing boundary condition, it produces reflections of less than −200 dB in entire frequency spectrum including the cut-off frequencies.
AN EFFICIENT MODAL FDTD FOR ABSORBING BOUNDARY CONDITIONS AND INCIDENT WAVE GENERATOR IN WAVEGUIDE STRUCTURES
2006-09-17
PIER
Vol. 68, 197-228, 2007
download: 1043
Effect of Wildfire-Induced Thermal Bubble on Radio Communication
Kgakgamatso Mphale , Mal Heron and Tej Verma
Horizontal roll vortex pairs are dynamical structures that transfer energy and emissions from wildfires into the atmosphere. The vortices form at the edges of an intense line wildfire and emulate two cylinders, which form two curvatures of a biconcave thermal lens. Wildfire plume provides a dielectric material for the dielectric lens, whose permittivity is influenced by the nature, quantity of constituents (e.g., potassium and graphitic carbon) and variation of temperature with height in the plume. The environment created by the plume is radio sub-refractive with an effect of spreading radio wave beams. A numerical experiment was carried out to quantify loss of Ultra High Frequency (UHF) radio signal intensity when high intensity wildfire- induced horizontal roll vortices intercept UHF propagation path. In the numerical experiment, a collimated radio wave beam was caused to propagate along fuel-fire interface of a very high intensity wildfire in which up to two roll vortex pairs are formed. Maximum temperature of the simulated wildfire was 1200 K. Flame potassium content was varied from 0.5-3.0%. At 3.0% potassium content, a vortex pair imposed a maximum radio ray divergence of 2.1 arcmins while two vortex
EFFECT OF WILDFIRE-INDUCED THERMAL BUBBLE ON RADIO COMMUNICATION
2006-09-15
PIER
Vol. 68, 185-196, 2007
download: 268
Fast Calculation of Wide-Band Responses of Complex Radar Targets
Shaogang Wang , Xinpu Guan , Dang-Wei Wang , Xingyi Ma and Yi Su
In this paper, a fast method is proposed to calculate wide- band frequency responses of complex radar targets on a personal computer. When frequencies are low, the frequency factor can be separated from space parameters by Chebyshev polynomial approximations of Green's function. Then, matrices from MoM at different frequencies can be rapidly filled, and monostatic RCS can be soon calculated. If frequencies are relatively high, a fast high-order MoM (HO-MoM), in which matrices products are in place of multi- dimension numerical integrations, is presented. That will reduce the CPU time requirement. Lastly, Numerical results are given for various structures and compared with other available data.
FAST CALCULATION OF WIDE-BAND RESPONSES OF COMPLEX RADAR TARGETS
2006-09-15
PIER
Vol. 68, 169-183, 2007
download: 286
Two Novel Structures for Tunable MEMS Capacitor with RF Applications
Ebrahim Abbaspour-Sani , N. Nasirzadeh and Gholamreza R. Dadashzadeh
Two novel structures for high-Q MEMS tumble capacitors are presented. The proposed designs include full plate as well as the comb structured capacitors. They can be fabricated employing surface micromachining technology which is CMOS-compatible. The structures do not require the cantilever beams which introduce considerable series resistance to the capacitor and decrease the quality factor. Therefore, our proposed structures achieve better Q in a smaller die area. The simulated results for 1 pF full plate capacitor shows a tuning range of 42% and a Q of 47 at 1 GHz. However, with the same initial capacitance, but the comb structure, the tuning range is increased to 43% but the Q is decreased to 45 at 1 GHz. The simulated Pull-in voltage with no residual stress is 3.5 V for both capacitors. The S11 responses are reported for a frequency range from 1 up to 4 GHz.
TWO NOVEL STRUCTURES FOR TUNABLE MEMS CAPACITOR WITH RF APPLICATIONS
2006-09-15
PIER
Vol. 68, 161-167, 2007
download: 319
Circular Slot with a Novel Circular Microstrip Open Ended Microstrip Feed for UWB Applications
Fatemeh Gharakhili , Masum Fardis , Gholamreza R. Dadashzadeh , Akram Ahmadi and Nasrin Hojjat
This paper presents the study of a circular slot antenna for ultrawide-band (UWB) applications. Antenna is fed by a circular open ended microstrip line. The frequency band considered is from 4 to 14 GHz, which has approved as a commercial UWB band. The proposed antenna has a return loss less than 10 dB, phased linear, and gain flatness over the above a frequency band.
CIRCULAR SLOT WITH A NOVEL CIRCULAR MICROSTRIP OPEN ENDED MICROSTRIP FEED FOR UWB APPLICATIONS
2006-09-15
PIER
Vol. 68, 151-160, 2007
download: 384
Charge Moment Tensor and the Magnetic Moment of Rotational Charged Bodies
Guo-Quan Zhou
Based on the strict and delicate analogue relation between the magnetic moment of rotational charged bodies and the rotation inertia of rigid bodies, a new concept of charge moment tensor I which is different from the existent electric multiple moment is introduced in this paper. And by means of eigenvalue theory of tensor I , the concept of principal axes and principal-axis scalar charge moment are constructed, and further the scalar charge moment of a charged body and the magnetic moment of a rotational charged body around an arbitrary direction are attained. The relationship between the scalar charge moment distributive law of quadric camber and the positive or negative definiteness of tensor I are discussed. Meanwhile Some principles or theorems are extended, generalized, illustrated, and enumerated.
CHARGE MOMENT TENSOR AND THE MAGNETIC MOMENT OF ROTATIONAL CHARGED BODIES
2006-09-15
PIER
Vol. 68, 91-111, 2007
download: 321
Enhancement of Omnidirectional Reflection Bands in One-Dimensional Photonic Crystals with Left-Handed Materials
Sanjeev Srivastava and Sant Ojha
In this paper we show, theoretically, that total omnidirec- tional reflected frequency band is enlarged considerably by using one- dimensional photonic crystal (PC) structure composed of alternate lay- ers of ordinary material (OM) and left handed material (LHM). From the analysis it is found that the proposed structure has very wide range of omnidirectional total frequency bands for both polarizations in com- parison to the normal PC structure, which consists of alternate layers of ordinary material having positive index of refraction. The proposed structure also has an absolute band gap that can be exploited to trap the light.
ENHANCEMENT OF OMNIDIRECTIONAL REFLECTION BANDS IN ONE-DIMENSIONAL PHOTONIC CRYSTALS WITH LEFT-HANDED MATERIALS
2006-09-15
PIER
Vol. 68, 71-90, 2007
download: 381
Analysis of Inductive Waveguide Microwave Components Using an Alternative Port Treatment and Efficient Fast Multipole
Francisco Perez Soler , Fernando Quesada Pereira , Juan Pascual-Garcia , David Canete Rebenaque and Alejandro Alvarez Melcon
This paper presents a simple and alternative approach for the analysis of inductive waveguide microwave components. The technique uses a surface integral equation formulation, in which the contours of the waveguide walls and of the inner obstacles are all discretized using triangular basis functions. In order to avoid the relative convergence problem of other techniques based on mode matching, an alternative port treatment is used. The technique is based on the application of the extinction theorem using the spatial representation of the Green's functions in the terminal waveguides. In addition, the Fast Multipole Method is proposed in order to reduce the computational cost for large problems. Different complex structures are analyzed, including microwave bandpass filters with elliptic transfer functions, waveguide bends and T-junctions. Results show the high accuracy and versatility of the technique derived.
ANALYSIS OF INDUCTIVE WAVEGUIDE MICROWAVE COMPONENTS USING AN ALTERNATIVE PORT TREATMENT AND EFFICIENT FAST MULTIPOLE
2006-09-15
PIER
Vol. 68, 53-70, 2007
download: 292
Time Stepping Finite Element Analysis of Broken Bars Fault in a Three-Phase Squirrel-Cage Induction Motor
Jawad Faiz , Bashir Ebrahimi and Mohammad Sharifian
Broken rotor bars and end-ring are common faults in three-phase squirrel-cage induction motors. These faults reduce the developed toque and increase the speed fluctuations of the motor. Meanwhile, developed unsymmetrical magnetic generates noise and vibration in the motor. Local heat around the broken bars may gradually break the adjacent bars and the motor will be finally out of service. Finite element method (FEM) is the most accurate technique for diagnosis and analysis of induction motor, because it can include all actual characteristics of the healthy and faulty induction motors. However, current density is generally considered as input for performance computation process, while fault can inject a large harmonics to the stator current. These harmonics may not be ignored in the fault diagnosis of the motor. In addition, all FE applications consider the steady-state mode of operation. In this paper, a three-phase voltage-fed squirrel-cage induction motor with rotor broken bars is proposed and analyzed for the starting period of the motor. Both no-load and on-load cases are considered. Also, concentrated rotor broken bars under one-pole and the distributed rotor broken bars under different poles are studied and compared.
TIME STEPPING FINITE ELEMENT ANALYSIS OF BROKEN BARS FAULT IN A THREE-PHASE SQUIRREL-CAGE INDUCTION MOTOR
2006-09-15
PIER
Vol. 68, 35-51, 2007
download: 344
A Propagation Study of the 28 GHz Lmds System Performance with m -Qam Modulations Under Rain Fading
Kunshan Chen and Chih-Yuan Chu
In this paper, rain statistics of 10 years record in Taiwan area was used to investigate the transmission performance of the Ka- band LMDS system with QAM modulation. Emphasis was placed to investigate the effects of rain fading under M-QAM modulation schemes. It is found that for LMDS cellular network, M-QAM modulation is difficult to provide an effective and reliable high speed transmission for the case of 6 km radius of cell coverage unless the frequency and polarization diversities are applied; otherwise, the cell coverage of service should be shrunk.
A PROPAGATION STUDY OF THE 28 GHz LMDS SYSTEM PERFORMANCE WITH M-QAM MODULATIONS UNDER RAIN FADING
2006-09-15
PIER
Vol. 68, 15-33, 2007
download: 359
Rigorous Design and Efficient Optimizattion of Quarter-Wave Transformers in Metallic Circular Waveguides Using the Mode-Matching Method and the Genetic Algorithm
Mohamed Lahdi Riabi , Rawdha Thabet and Mohamed Belmeguenai
This paper presents an approach for the design and optimization of pseudo-gradual transitions in circular waveguides using the genetic algorithm (GA). The characterization of these transitions is carried out by the mode-matching method. This method, associated with the generalized scattering matrix technique, leads to determine the reflection coefficient on the useful band of the studied structures and to observe their frequential behavior. The GA is employed to optimize the choice of geometrical parameters by minimizing a cost function, corresponding to the maximum magnitude of the reflection coefficient in the band. The selection of the most relevant parameters allowed an improvement of the performances for the optimized components. Results of optimization are given for both two and four-section transformers.
RIGOROUS DESIGN AND EFFICIENT OPTIMIZATTION OF QUARTER-WAVE TRANSFORMERS IN METALLIC CIRCULAR WAVEGUIDES USING THE MODE-MATCHING METHOD AND THE GENETIC ALGORITHM
2006-09-15
PIER
Vol. 68, 1-13, 2007
download: 323
Propagation in a Ferrite Circular Waveguide Magnetized through a Rotary Four-Pole Magnetic Field
Mateusz Mazur , Edward Sedek and Jerzy Mazur
The coupled mode approach is applied to the ferrite circular waveguide magnetized through a rotary four-pole transverse bias magnetic fields. The plausible mathematical model of the ferrite waves propagation in the guide is developed which includes gyromagnetic interaction of two orthogonal TE11 isotropic modes. The importance of the birefringence effect in determining of phase shift and polarization phenomena are thereby demonstrated. As a result basic design consideration of the circular polarizer applied as a "half-wave plate" in rotary-field phase shifter are provided.
PROPAGATION IN A FERRITE CIRCULAR WAVEGUIDE MAGNETIZED THROUGH A ROTARY FOUR-POLE MAGNETIC FIELD