Vol. 68
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-09-17
An Efficient Modal FDTD for Absorbing Boundary Conditions and Incident Wave Generator in Waveguide Structures
By
, Vol. 68, 229-246, 2007
Abstract
When the finite-difference time-domain method is used to compute waveguide structures, incident waves are needed for calculating electrical parameters (e.g., the scattering parameters), and effective absorbing boundary conditions are required for terminating open waveguide structures. The incident waves are conventionally obtained with inefficient three-dimensional (3D) simulations of long uniform structures, while the absorbing boundary conditions reported so far do not perform well at or below cut-off frequencies. To address the problems, we propose a novel one-dimensional (1D) finite- difference time-domain method in this paper. Unlike the other methods developed so far, the proposed method is derived from the finite-difference time-domain formulation, and therefore has the same numerical characteristics as that of the finite-difference time-domain method. As a result, when used to obtain an incident wave, it produces results almost identical to those produced by the conventional finite- difference time-domain method except computer rounding-off errors. When used as the absorbing boundary condition, it produces reflections of less than −200 dB in entire frequency spectrum including the cut-off frequencies.
Citation
Shuiping Luo, and Zhizhang (David) Chen, "An Efficient Modal FDTD for Absorbing Boundary Conditions and Incident Wave Generator in Waveguide Structures," , Vol. 68, 229-246, 2007.
doi:10.2528/PIER06090506
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagations, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Taflove, A. (ed.), Advances in Computational Electrodynamics: the Finite-difference Time-domain Method, Artech House Inc., 1998.

3. Huang, T. W.B. Houshmand, and T. Itoh, "Efficient modes extraction and numerically exact matched sources for a homogeneous waveguide cross-section in a FDTD simulation," IEEE MTT-S International Microwave Symposium Digest, Vol. 1, No. 5, 31-34, 1994.

4. Eswarappa, C.P. M. So, and W. J. R. Hoefer, "New procedures for 2-D and 3-D microwave circuit analysis with the TLM method," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, No. 5, 661-664, 1990.

5. Moglie, F., T. Rozzi, P. Marcozzi, and A. Schiavoni, "A new termination condition for the application of FDTD techniques to discontinuity problems in close homogeneous waveguide," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 12, 475-477, 1992.
doi:10.1109/75.173399

6. Huang, T.-W., B. Houshmand, and T. Itoh, "The implementation of time-domain diakoptics in the FDTD method," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 11, 2149-2155, 1994.
doi:10.1109/22.330131

7. Righi, M., W. J. R. Hoefer, M. Mongiardo, and R. Sorrentino, "Efficient TLM diakoptics for separable structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 4, 1-2, 1995.
doi:10.1109/22.375234

8. Mrozowski, M., M. Niedzwiecki, and P. Suchomski, "A fast recursive highly dispersive absorbing boundary condition using time domain diakoptics and Laguerre polynomials," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 6, 183-185, 1995.
doi:10.1109/75.386125

9. Mrozowski, M., M. Niedzwiecki, and P. Suchomski, "Improved wideband highly disersive absorbing boundary condition," Electronics Letters, Vol. 32, No. 12, 1109-1111, 1996.
doi:10.1049/el:19960733

10. Alimenti, F., P. Mezzanotte, L. Roselli, and R. Sorrentino, "Modal absorption in the FDTD method: a critical review," International Journal of Numerical Modeling, Vol. 10, 245-264, 1997.
doi:10.1002/(SICI)1099-1204(199707)10:4<245::AID-JNM278>3.0.CO;2-P

11. Jung, K. Y., H. Kim, and K. C. Ko, "An improved unimodal absorbing boundary condition for waveguide problems," IEEE Microwave and Guided Wave Letters, Vol. 7, No. 11, 368-370, 1997.
doi:10.1109/75.641423

12. Lord, J. A.R. I. Henderson, and B. P. Pirollo, "FDTD analysis of modes in arbitrarily shaped waveguides," IEE National Conference on Antennas and Propagation, 31-224, 1999.

13. Kreczkowski, A., T. Rutkowski, and M. Mrozowski, "Fast modal ABC's in the Hybrid PEE-FDTD analysis of waveguide discontinuities," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 5, 186-188, 1999.
doi:10.1109/75.766759

14. Alimenti, F., P. Mezzanotte, L. Roselli, and R. Sorrentino, "A revised formulation of modal absorbing and matched modal source boundary conditions for the efficient FDTD analysis of waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 1, 50-59, 2000.
doi:10.1109/22.817471

15. Luo, S. and Z. Chen, "Efficient one-dimensional FDTD modeling of waveguide structures," Proceeding of Frontiers in Applied Computational Electromagnetics, 19-20, 2006.

16. Xiao, S., R. Vahldieck, and H. Jin, "Full-wave analysis of guided wave structures using a novel 2-D FDTD," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 5, 165-167, 1992.
doi:10.1109/75.134342

17. Xiao, S. and R. Vahldieck, "An efficient 2-D FDTD algorithm using real variables," IEEE Microwave and Guided Wave Letters, Vol. 3, No. 5, 127-129, 1993.
doi:10.1109/75.217204

18. Loh, T. H. and C. Mias, "Implementation of an exact modal absorbing boundary termination condition for the application of the finite-element time-domain technique to discontinuity problems in closed homogeneous waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 882-888, 2004.
doi:10.1109/TMTT.2004.823559

19. Lou, Z. and J. M. Jin, "An accurate waveguide port boundary condition for the time-domain finite-element method," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 3014-3023, 2005.
doi:10.1109/TMTT.2005.854223

20. Kuzuoglu, M. and R. Mittra, "Frequency dependence of the constutive parameters of causal perfectly anisotropic absorbers," IEEE Microwave and Guided Letters, Vol. 6, No. 12, 447-449, 1996.
doi:10.1109/75.544545

21. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A