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Abstract—When the finite-difference time-domain method is used
to compute waveguide structures, incident waves are needed for
calculating electrical parameters (e.g., the scattering parameters), and
effective absorbing boundary conditions are required for terminating
open waveguide structures. The incident waves are conventionally
obtained with inefficient three-dimensional (3D) simulations of long
uniform structures, while the absorbing boundary conditions reported
so far do not perform well at or below cut-off frequencies. To
address the problems, we propose a novel one-dimensional (1D) finite-
difference time-domain method in this paper. Unlike the other
methods developed so far, the proposed method is derived from the
finite-difference time-domain formulation, and therefore has the same
numerical characteristics as that of the finite-difference time-domain
method. As a result, when used to obtain an incident wave, it produces
results almost identical to those produced by the conventional finite-
difference time-domain method except computer rounding-off errors.
When used as the absorbing boundary condition, it produces reflections
of less than −200 dB in entire frequency spectrum including the cut-off
frequencies.

1. INTRODUCTION

Since the finite-difference time-domain (FDTD) method was reported
[1], it has become a popular numerical method in solving Maxwell’s
equations because of its simplicity and flexibility [2]. The FDTD
method has been applied to compute waveguide structures. To do so,
two things are often needed: a known incident wave for calculating
electrical parameters (e.g., scattering parameters) and an effective
absorbing boundary condition for terminating open structures.
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To obtain an incident wave, a separate simulation of a long
waveguide structure usually is run [3]. For a 3D structure, such
a simulation is often inefficient because the simulation is executed
in three dimensions and therefore requires large memory and CPU
time. In order to solve the problems as well as to develop efficient
absorbing boundary conditions, many 1D modal absorbing boundary
conditions (modal ABCs) have been proposed [4–14]. Most of them use
analytically or numerically generated Green’s functions or impedance
functions. However, these Green’s functions or impedance functions
often have numerical characteristics different from those of 3D FDTD
formulations, especially for frequencies around the cut-off frequency
of a waveguide mode. Consequently, they do not offer highly accurate
results, for instance, near or below the cut-off frequency of a waveguide
mode.

To resolve the problem, we propose a new compact 1D FDTD
method in this paper. Unlike other methods reported so far, this
method is derived directly from the FDTD formulations; therefore,
it has the same numerical characteristics as that of the 3D FDTD
method with which it interfaces. As a result, it not only allows
efficient computation of an incident wave due to its one dimensional
nature, but also provides a truly perfect modal absorbing boundary
conditions (modal ABCs) (better than −200 dB for the full frequency
spectrum, including the cut-off frequency). The preliminary work
on the method was reported in [15] while this paper presents the
full developments and thorough studies for the method, including
dispersion analysis (that rationalizes the excellence performance of the
method) and more numerical tests. In other words, in modeling a
long uniform waveguide structure, the proposed 1D method can be
used to replace the conventional 3D FDTD method with much higher
efficiency and the other existing methods with at least much better
accuracy and performance. Note that since the accuracy and validity
of conventional 3D FDTD method have been studied and proven in the
past four decades, its results are used in this paper as the benchmark
solutions for comparisons with the proposed method.

This paper is organized as follows. Section 2 presents the
derivation of the proposed 1D method. Section 3 shows the dispersion
analysis of the proposed method. Section 4 describes the two
applications of the proposed method: generation of the incident wave
and absorption of waves. Section 4 presents the numerical results that
demonstrate the validity and effectiveness of the proposed technique.
Further discussion and conclusions relating to the proposed method
follow in Section 5.
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2. FORMULATION OF THE PROPOSED 1D FDTD
METHOD

The conventional 3D FDTD formulations, which are well-known,
contain computations that are recursive in time [2]. For instance, for
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The equations for the other field components can be expressed
similarly.

For a homogeneously filled waveguide, field distributions of a given
mode on a cross-section do not change with time, frequency and the
longitudinal coordinate. They can be found analytically or numerically
(e.g., [16, 17]). Suppose that a mode is traveling in z-direction and
Yee’s grid is applied as shown in Fig. 1.

The fully discretized Maxwell’s equations (1) can then be rewritten
as:
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Figure 1. The electric and magnetic field positions in Yee’s lattice for
a waveguide structure, Z is the wave propagation direction.

The equations for other field components can be written similarly as
follows:
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Coefficients α and β are ratios of field quantities on the nodes of
a cross section of the waveguide. They are constant and can be found
from the known unchanged field distributions of the given mode. Note
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that in computing α and β, one should chose non-zero field points for
the denominators in Equations (3a)–(3h) for the given mode.

Through careful examination, one can see that Equations
(2a)–(2f) are essentially 1D FDTD recursive formulations. The
computations need to be carried out only along z-direction (or the
k-direction) with a specific set of i and j. At any other i and j, the
field quantities can be obtained from the known field distributions on
the same cross section.

3. NUMERICAL DISPERSION OF THE PROPOSED
METHOD

In order to compare the numerical dispersion of the proposed method
with the conventional FDTD method, we consider the TEmn mode in
a rectangular waveguide as an example. In a case of other modes or a
non-rectangular waveguide, a similar analysis can be made and similar
conclusions can be reached.

Suppose the rectangular waveguide has width a in x direction and
height b in y direction. The five field components for the TEmn mode
along z-direction can be written as:

Ex = Ex0 cos (kxx) sin (kyy) ej(kzz−ωt) (4a)

Ey = Ey0 sin (kxx) cos (kyy) ej(kzz−ωt) (4b)

Hx = Hx0 sin (kxx) cos (kyy) ej(kzz−ωt) (4c)

Hy = Hy0 cos (kxx) sin (kyy) ej(kzz−ωt) (4d)

Hz = Hz0 cos (kxx) cos (kyy) ej(kzz−ωt) (4e)
Ez = 0 (4f)

where kx = mπ
a , ky = nπ

b , kz is the spatial frequency in the z direction,
and ω is the temporal angular frequency.

Substituting (4a)–(4f) into (2a)–(2f), we obtain:
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The above equations form a system of five homogeneous equations
with unknowns Ex0, Ey0, Hx0, Hy0, and Hz0. Because the solutions
of the system have to be nontrivial, the determinant of its coefficient
matrix should be equal to zero. This leads to:
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where kx = mπ
a and ky = nπ

b .
Equation (6a) corresponds to ω = 0. It represents the static

solution. Equation (6b) will lead to Hz0 = 0, which does not agree
with the assumption of TE modes. Therefore, the remaining (6c) is
the numerical dispersion relationship of the TE modes.

It is obvious that Equation (6c) is the same as the numerical
dispersion relationship of the 3D FDTD method [2] for TEmn mode
with kx = mπ

a and ky = nπ
b .

To verify the above claim numerically, we considered a rectangular
waveguide where width a = 0.02 m in x direction, height b = 0.01 m in
y direction and z was the wave traveling direction. The mesh size was
∆x = 0.001 m, ∆y = 0.001 m, and ∆z = 0.001 m for the 3D FDTD
mesh that discretizes the waveguide. The time step size was taken
as max ∆t = ∆tmax where ∆tmax is the stability time step limit of
the 3D FDTD formulation. TE10 mode was excited with a modulated
Gaussian pulse sin (2πf0t) e−(t−t0)2/T 2

in the center of the structure.
Parameter T equaled 20∆t, t0 equaled 60∆t, f0 equaled 60.465 GHz
and the corresponding wavelength λg in the waveguide was about
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Figure 2. The Ey recorded at a point 300∆z or 60λg away from the
source plane.

5∆z = 0.005 m. The recording point was 300∆z or 60λg away from
the source plane. Such a long distance between the source and the field
recording point allows us to observe effects of the numerical dispersion
on the numerical field solutions. Fig. 2 shows the Eys computed with
the 3D FDTD and the proposed 1D FDTD. The difference of the two
Eys computed with the 3D FDTD and the proposed 1D FDTD is
shown in Fig. 3.

As can be seen, two Eys overlap almost completely. The maximum
difference between the two Eys is less than 2 × 10−15 (V/m) whereas
the maximum field value is around 0.5 (V/m). Such small differences
suggest that they are due to computer rounding-off errors. This verifies
experimentally the claim we had before: the numerical dispersion
relationship of the proposed 1D FDTD is the same as that of the
original 3D FDTD.

For TM modes, the same conclusion can be reached by following
an analysis procedure similar to the one described above.

4. APPLICATIONS OF THE PROPOSED METHOD

The proposed method as represented by Equations (2a)–(2f) has two
major applications in simulating a waveguide structure: to efficiently
generate numerical incident waves (that are required for computing
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Figure 3. Relative difference between the two Eys produced by the
1D FDTD and the reference 3D FDTD.

electrical parameters such as scattering parameters) and to serve as an
efficient wideband absorbing boundary (that is computed only in one
dimension).

4.1. Efficient Generation of an Incident Wave

Because of its one dimensional nature, the proposed method can
be used to obtain an incident wave by computing a long waveguide
structure; the waveguide is long enough that the wave reflected by any
imperfect termination at the ends can not return to the field recording
point and contaminate the incident wave [3]. In the numerical example
presented in Section 4, the incident wave obtained with the proposed
method is found to be fundamentally the same as that obtained using
the conventional 3D FDTD method; the relative differences was less
than 10−11 due to the computer rounding-off errors. In other words,
the proposed method can produce an incident wave for all intents and
purposes identical to that obtained with the conventional 3D FDTD.
This results from the fact that the proposed 1D method is derived from
the 3D FDTD method and has the same numerical characteristics as
that of the 3D FDTD method, as proven before. However, because
of its one dimensional nature, the proposed method has much higher
computational efficiency than the conventional 3D FDTD method.
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4.2. Absorbing Boundary Condition

Since the proposed method can easily simulate a long waveguide
structure, it can also be used to terminate a waveguide structure as
illustrated in Fig. 4. In it, a waveguide is connected to a discontinuity
where both of them are modeled using the conventional 3D FDTD grid.
The waveguide is then terminated with the absorbing boundary that
is modeled using the proposed 1D FDTD method. Field components
Ex|i− 1

2
, j, k−1 and Ey|i, j− 1

2
, k−1 are used to pass the field values from the

3D FDTD grid into the proposed 1D FDTD grid; field components
Ey|i, j− 1

2
, k and Ex|i− 1

2
, j, k are used to pass the field values in the

proposed 1D FDTD grid into the 3D FDTD grid.

Figure 4. The proposed absorbing termination using the 1D FDTD
mesh.

In general, multi-modes exist in the waveguide. However,
Equations (2a)–(2f) are valid only for a single mode. To resolve the
problem, each mode has to be extracted at the interface between the 3D
FDTD mesh and the proposed 1D FDTD mesh. The mode extraction
can be performed using the orthogonality of modes as described in
[6, 7]. Fig. 5 illustrates such extraction operations.

In Fig. 5, each mode corresponds to an independent 1D FDTD
mesh line. The positioning of the 1D FDTD mesh lines, i.e., the specific
values of i and j in (2a)–(2f), can be the same or can be different for
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Figure 5. Mode extraction and combination diagram at the interface
between the waveguide and the 1D FDTD absorbing termination.

the modes. The requirement for the positioning of 1D FDTD mesh line
is that it should not be at the null field points of the mode it simulates.

In the numerical example presented in Section 5, it is shown
that the proposed termination provides an absorption of better
than −200 dB in the entire frequency spectrum including the cut-off
frequencies.

5. NUMERICAL EXAMPLES

We considered the same long waveguide as that used in Section 3: a
rectangular waveguide with width a = 0.02 m in x direction, height
b = 0.01 m in the y direction and z as the wave propagating direction.
The mesh size was ∆x = 0.001 m, ∆y = 0.001 m, and ∆z = 0.001 m.
The time step size was taken as ∆t = ∆tmax. The total number of the
iterations was 4096 (which amounts to 7.8808 ns of the real time). The
source used in the FDTD simulation was the Dirac impulse function
δ(n). Matlab was used to program the method and the simulations
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were run on a laptop Pentium-IV PC with 1.8-GHz CPU and 512-MB
RAM. The data type used in the simulation is double precision for
expected small numbers.

For the first application, we computed the incident waves for TE11

mode. The source was placed in the middle of the waveguide. The
two ends of the waveguide were terminated with perfect conductors.
The field recording points were placed at points 1∆z and 100∆z away
from the source plane respectively. The length of the waveguide was
206.8 cm, long enough so that no reflections from the end terminations
would reach the field recording points before the 4096 iterations were
completed. The structure was then simulated with a reference full-wave
3D FDTD method and the proposed 1D FDTD method; the results for
Ey are shown in Figs. 6 and 7 (for clarity, only first 0.5 ns is shown).
The maximum relative difference between the Ey obtained with the
reference full-wave 3D FDTD simulation and the proposed 1D FDTD
simulation is found less than 10−11, which is invisible in Figs. 6 and
7; it suggests computer-round-off errors as the cause of such a small
difference.
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Figure 6. The Ey values of the first 0.5 ns recorded at a point 1∆z
away from the source.

Table 1 shows the computational expenditures used. As can be
seen, the memory used by the proposed 1D method is about 0.6%
of that used by the 3D FDTD and CPU time is about 0.23%. The
proposed method saves significant amounts of memory and CPU time
usage.
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Figure 7. The Ey values of the first 0.5 ns recorded at a point 100∆z
away from the source.

Table 1. The memory and CPU time used by the proposed 1D FDTD
and the reference 3D FDTD.

The reference
3D FDTD

The proposed
1D FDTD

Memory 2334 KB 14 KB
CPU time 4271 s 9.9 s

For the second application, we used the proposed method as the
absorbing boundaries to terminate the rectangular waveguides at both
ends in order to measure the effectiveness of the absorption. The
source was placed 2∆z away from the absorbing boundary placed at
the right end of the waveguide and Ey was recorded in between the
source and the right absorbing boundary as shown in Fig. 8. Such
placements of the source and recording points allowed measurement
of the absorption of evanescent modes because they were close to the
absorbing boundary.

Two cases were simulated. The first was a single-mode case
where TE84 was excited. The second case was the multi-mode case
where TE10, TE20, TE30, TE40, TE11, TE21, TE31, TE41, were
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Figure 8. The positions of the source and the Ey recording point
when the 1D FDTD is used as the absorbing boundaries of the 3D
FDTD region.

excited simultaneously with equal magnitude (the worst case where
multiple modes exist). Fig. 9 and Fig. 10 show the computed
reflection coefficients in frequency domain. The reflection coefficient
was calculated using the following formulae:

|Γ| = 20 log

∣∣∣∣∣
Ey − Eref

y

Eref
y

∣∣∣∣∣ (dB) (7)

where Eref
y is the reference field value computed separately with the

conventional 3D FDTD for a very long waveguide. Ey is the field
value computed when the proposed 1D FDTD is used as the absorbing
boundaries (Fig. 8).

It can be seen from Figs. 9 and 10 that the proposed method
provides almost perfect absorbing terminating conditions in the entire
frequency spectrum from DC to 250 GHz. The reflection coefficients
are less then −220 dB even at or below the cut-off frequencies (the
cut-off frequencies of TE10, TE41 and TE84 are 7.5 GHz, 33.54 GHz
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Figure 9. The computed reflection coefficient for the single-mode case
with the proposed 1D FDTD used as the absorbing boundaries shown
in Fig. 8.

and 84.85 GHz). Such a high absorption indicates the extreme
effectiveness of the proposed 1D FDTD absorbing condition. Because
both the source and the field recording points are very close to the
right absorbing boundary (less than 3∆z away), this means that the
proposed method can absorb the evanescent modes very effectively.
This is not surprising because the proposed 1D FDTD method has the
same numerical dispersion properties as the 3D FDTD method that it
connected to.

It should be noted that in the above numerical experiments,
the numbers of modes excited were chosen arbitrarily to test the
performance of the proposed method. In solving a realistic structure,
the number of modes to be considered can be decided in the same
manner as that employed in the mode matching techniques or in the
techniques described in [3–5, 7, 14, 18, 19]. We can also combine the
traditional CFS PML method [20, 21] and the proposed 1D FDTD
method. The 1D FDTD method is used to absorbing a few most
lower order modes which have relatively large values around their cut-
off frequencies, the traditional CFS PML can be used to absorbing the
remained higher order modes. The hybrid method, which combines the
traditional CFS PML method and the proposed 1D FDTD method, is
our next step task.
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Figure 10. The computed reflection coefficient for the multi-mode
case with the proposed 1D FDTD used as the absorbing boundaries
shown in Fig. 8.

6. DISCUSSION AND CONCLUSIONS

In this paper, a new compact 1D FDTD method for uniformly
filled waveguide structures is proposed. It has the same numerical
characteristics as the conventional 3D FDTD method. It can be used
either to efficiently generate an incident wave or to effectively serve
as an almost perfect modal absorbing termination. The differences
from the results obtained with the 3D FDTD and the reflection
coefficients of the absorbing boundary were found to be extremely
small, less than −220 dB in the entire frequency spectrum including
the cut-off frequencies, due to the computer rounding-off errors. In
other words, the proposed method can handle both propagating and
evanescent modes very effectively. In spite of such high effectiveness,
the programming of the proposed method is very easy and little
analytical pre-processing is required.

It should be noted again that the results obtained with the
conventional 3D FDTD method were used as the benchmark solutions
for comparisons throughout the paper since the conventional method
has been proven to be an effective and accurate modeling method.
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