Vol. 68
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-01-09
Fast Computational Algoritm for EFIE Applied to Arbitrarily-Shaped Conducting Surfaces
By
, Vol. 68, 339-357, 2007
Abstract
This work presents a fast computational algorithm that can be used as an alternative to the conventional surface-integral evaluation method included in the electric field integral equation (EFIE) technique when applied to a triangular-patch model for conducting surfaces of arbitrary-shape. Instead of evaluating the integrals by transformation to normalized area coordinates, they are evaluated directly in the Cartesien coordinates by dividing each triangular patch to a finite number of small triangles. In this way, a large number of double integrals is replaced by a smaller number of finite summations, which considerably reduces the time required to get the current distribution on the conducting surface without affecting the accuracy of the results. The proposed method is applied to flat and curved surfaces of different categories including open surfaces possessing edges, closed surfaces enclosing cavities and cavity-backed apertures. The accuracy of the proposed computations is realized in all of the above cases when the obtained results are compared with those obtained using the area coordinates method as well as when compared with some published results.
Citation
Khalid Fawzy Ahmed Hussein, "Fast Computational Algoritm for EFIE Applied to Arbitrarily-Shaped Conducting Surfaces," , Vol. 68, 339-357, 2007.
doi:10.2528/PIER06122502
References

1. Hertel, T. W. and G. S. Smith, "Analysis and design of two- arm conical spiral antennas," IEEE Trans. Electromagn. Compat., Vol. 44, No. 1, 25-37, 2002.
doi:10.1109/15.990708

2. Hertel, T. W. and G. S. Smith, "On the dispersive properties of the conical spiral antenna and its use for pulsed radiation," IEEE Trans. Antennas. Propagat., Vol. 51, No. 7, 1426-1433, 2003.
doi:10.1109/TAP.2003.813602

3. Rao, S. M. and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 56-61, 1991.
doi:10.1109/8.64435

4. Sarkar, T. K., W. Lee, and S. M. Rao, "Analysis of transient scattering from composite arbitrarily shaped complex structures," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1625-1634, 2000.
doi:10.1109/8.899679

5. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 5, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

6. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetic Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301

7. Shore, R. A. and A. D. Yaghjian, "A low-order-singularity electric- field integral equation solvable with pulse basis functions and point matching," Progress In Electromagnetic Research, Vol. 52, 129-151, 2005.
doi:10.2528/PIER04073004

8. Zienkiewicz, O. C., The Finite Element Method in Engineering Science, McGraw-Hill, 1971.

9. Taylor, D. J., "Accurate and efficient numerical integration of weakly singular integrals in Galerkin EFIE Solutions," IEEE Trans. Antennas Propagat., Vol. 51, No. 7, 1630-1637, 2003.
doi:10.1109/TAP.2003.813623

10. Bluck, M. J., M. D. Pocock, and S. P. Walker, "An accurate method for the calculation of singular integrals arising in time- domain integral equation analysis of electromagnetic scattering," IEEE Trans. Antennas Propagat., Vol. 45, No. 12, 1793-1798, 1997.
doi:10.1109/8.650197

11. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal domains," IEEE Trans. Antennas Propagat., Vol. 32, No. 3, 276-281, 1984.
doi:10.1109/TAP.1984.1143304

12. Hanninen, I., M. Taskinen, and J. Sarvas, "Singularity subtraction integral formulation for surface integral equations with RWG rooftop and hybrid basis functions," Progress In Electromagnetic Research, Vol. 63, 243-278, 2006.
doi:10.2528/PIER06051901