Vol. 50
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-10-12
A Finite-Difference Time-Domain (FDTD) Software for Simulation of Printed Circuit Board (PCB) Assembly
By
Progress In Electromagnetics Research, Vol. 50, 299-335, 2005
Abstract
This paper describes the design of a three-dimensional (3D) finite-difference time-domain (FDTD) simulation software for printed circuit board (PCB) modeling. The flow, the dynamics and important algorithms of the FDTD simulation engine will be shown. The software is developed using ob ject-oriented programming (OOP) approach, to enable code reuse and ease of upgrade in future. The paper begins by looking at how a 3D PCB structure is created using cubes, and proceed to show the inclusion of various lumped components such as resistors, capacitor, inductor and active semiconductor components into the model. The architecture of the FDTD simulation program is then carefully explained. Finally a few sample simulation examples using the software will be illustrated at the end of the paper.
Citation
Fabian Kung Wai Lee, and Hean-Teik Chuah, "A Finite-Difference Time-Domain (FDTD) Software for Simulation of Printed Circuit Board (PCB) Assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
doi:10.2528/PIER04071401
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, No. 5, 302-307, 1966.

2. Piket-May, M. J., A. Taflove, and J. Baron, "FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads," IEEE Trans. Microwave Theory and Techniques, Vol. 42, No. 8, 1514-1523, 1994.
doi:10.1109/22.297814

3. Taflove, A., Computational Electrodynamics — The finite- difference time-domain method, Artech House, 1995.

4. Ciampolini, P., P. Mezzanotte, L. Roselli, and R. Sorrentino, "Accurate and efficient circuit simulation with lumped-element FDTD technique," IEEE Trans. Microwave Theory and Tech- niques, Vol. 44, No. 12, 2207-2214, 1996.
doi:10.1109/22.556448

5. Kuo, C., B. Houshmand, and T. Itoh, "Full-wave analysis of packaged microwave circuits with active and nonlinear devices: An FDTD approach," IEEE Trans. Microwave Thoery and Techniques, Vol. 45, No. 5, 819-826, 1997.
doi:10.1109/22.575606

6. Kung, F. and H. T. Chuah, "Modeling a diode in FDTD," J. of Electromagnetic Waves and Appl., Vol. 16, No. 1, 99-110, 2002.

7. Kung, F. and H. T. Chuah, "Modeling of bipolar junction transistor in FDTD simulation of printed circuit board," Progress in Electromagnetic Research, Vol. 36, 179-192, 2002.
doi:10.2528/PIER02013001

8. Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations, Wadsworth & Brooks/Cole Mathematics Series, 1989.

9. Kung, F., "Modeling of electromagnetic waves propagation in printed circuit board and related structures," Ph.D. thesis, No. 5, 2003.

10. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements — a new perspective," Progress in Electromagnetic Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901

11. Luebbers, R. J. and F. Hunsberger, "FDTD for Nth-order dispersive media," IEEE Trans. Antenna and Propagation, Vol. 40, No. 11, 1297-1301, 1992.
doi:10.1109/8.202707

12. Sullivan, D. M., "Z-transform theory and the FDTD method," IEEE Trans. Microwave Theory Techniques, Vol. 43, No. 3, 676-682, 1995.
doi:10.1109/22.372115

13. Massobrio, G. and P. Antognetti, Seminconductor Device Modeling with SPICE, 2nd edition, 1993.

14. Strauss, R., Surface Mount Technology, Butterworth-Heinemann, 1994.

15. Murray III, W. H. and C. H. Pappas, Borland C++ in Depth, McGraw-Hill, 1996.

16. http://pesona.mmu.edu.my/ ~wlkung/winfdtd_exe.zip http://pesona.mmu.edu.my/ ~wlkung/winfdtd_exe.zip.

17. Blood, W. R., MECL System Design Handbook, 3rd edition, 1980.

18. Johnson, H. W. and M. Graham, High-Speed Digital Design — A handbook of black magic, Prentice Hall, 1993.

19. Smith, J. R., Modern Communication Circuits, 2nd edition, 1998.

20. Phillips Semiconductor, , BFG520; BFG520/X, BFG520/XR, NPN 9 GHz wideband transistor, Technical Data, www.semiconductors.com, 1997.

21. Agilent Technologies, , Surface mount RF Schottky barrier diodes: HSMS-282x series, Technical Data, www.semiconductor.agilent.com, 2000.

22. Robertson, I. D. and S. Lucyszyn, RFIC and MMIC Design and Technology, The Institution of Electrical Engineers, 2001.

23. Taflove, A. (ed.), Advances in Computational Electrodynamics — The finite-difference time-domain method, Artech House, 1998.

24. Kirschning, M. and R. H. Jansen, "Accurate wide-range design equations for frequency-dependent characteristic of parallel coupled microstrip lines," IEEE Trans. Microwave Thoery and Techniques, Vol. a correction of the paper appears on 33 on the same journal, 83-90, 1984.
doi:10.1109/TMTT.1984.1132616

25. Duran, P. A., A Practical Guide to Analog Behavioral Modeling for IC System Design, Kluwer Academics Publishers, 1998.