submit Submit login
Vol. 182
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2025-01-22
High Harmonic Generation in Integrated Nonlinear Platforms
By
Progress In Electromagnetics Research, Vol. 182, 27-54, 2025
Abstract
Lasers emitting visible light based on high harmonic generation (HHG) have significantly enhanced measurement capabilities, enabling new applications across precision metrology, attosecond science, and ultrafast time-resolved spectroscopy. This paper discusses the theoretical framework of HHG with a focus on nonlinear effects, examining in depth second-harmonic generation (SHG) and third-harmonic generation (THG) mechanisms, as well as a thermal nonlinear model for pump stability analysis. The current state of HHG within integrated optical circuits is reviewed, with a particular emphasis on its implementation in high-index doped silica glass micro-ring resonators (HDSG MRRs). We conclude by addressing future directions for optimizing these systems to expand their applicability in advanced photonic technologies, highlighting their potential for innovation in both applied and fundamental sciences.
Citation
Yuhua Li, Shao Hao Wang, Brent E. Little, and Sai Tak Chu, "High Harmonic Generation in Integrated Nonlinear Platforms," Progress In Electromagnetics Research, Vol. 182, 27-54, 2025.
doi:10.2528/PIER24111201
References

1. Jones, R. Jason, Kevin D. Moll, Michael J. Thorpe, and Jun Ye, "Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity," Physical Review Letters, Vol. 94, No. 19, 193201, 2005.

2. Gohle, Christoph, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, "A frequency comb in the extreme ultraviolet," Nature, Vol. 436, No. 7048, 234-237, 2005.

3. Lu, Xiyuan, Gregory Moille, Ashutosh Rao, Daron A. Westly, and Kartik Srinivasan, "Efficient photoinduced second-harmonic generation in silicon nitride photonics," Nature Photonics, Vol. 15, No. 2, 131-136, 2021.

4. Rutledge, Jay, Anthony Catanese, Daniel D. Hickstein, Scott A. Diddams, Thomas K. Allison, and Abijith S. Kowligy, "Broadband ultraviolet-visible frequency combs from cascaded high-harmonic generation in quasi-phase-matched waveguides," Journal of the Optical Society of America B, Vol. 38, No. 8, 2252-2260, 2021.

5. Stegeman, George I. and Roger H. Stolen, "Waveguides and fibers for nonlinear optics," Journal of the Optical Society of America B, Vol. 6, No. 4, 652-662, 1989.

6. Walmsley, Ian A. and Christophe Dorrer, "Characterization of ultrashort electromagnetic pulses," Advances in Optics and Photonics, Vol. 1, No. 2, 308-437, 2009.

7. Kauranen, Martti and Anatoly V. Zayats, "Nonlinear plasmonics," Nature Photonics, Vol. 6, No. 11, 737-748, 2012.

8. Liu, Xianwen, Alexander W. Bruch, Juanjuan Lu, Zheng Gong, Joshua B. Surya, Liang Zhang, Junxi Wang, Jianchang Yan, and Hong X. Tang, "Beyond 100 THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide," Nature Communications, Vol. 10, No. 1, 2971, 2019.

9. Zhang, Yuquan, Changjun Min, Xiujie Dou, Xianyou Wang, Hendrik Paul Urbach, Michael G. Somekh, and Xiaocong Yuan, "Plasmonic tweezers: For nanoscale optical trapping and beyond," Light: Science & Applications, Vol. 10, No. 1, 59, 2021.

10. Boyd, R. W., Nonlinear Optics, Academic Press, 2003.

11. Fiore, A., V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear optical material," Nature, Vol. 391, No. 6666, 463-466, 1998.

12. Fiore, Andrea, S. Janz, L. Delobel, P. Van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, "Second-harmonic generation at λ= 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching," Applied Physics Letters, Vol. 72, No. 23, 2942-2944, 1998.

13. Rao, S. Venugopal, K. Moutzouris, and M. Ebrahimzadeh, "Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques," Journal of Optics A: Pure and Applied Optics, Vol. 6, No. 6, 569, 2004.

14. Moutzouris, K., S. Venugopal Rao, Majid Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, "Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides," Optics Letters, Vol. 26, No. 22, 1785-1787, 2001.

15. Levy, Jacob S., Mark A. Foster, Alexander L. Gaeta, and Michal Lipson, "Harmonic generation in silicon nitride ring resonators," Optics Express, Vol. 19, No. 12, 11415-11421, 2011.

16. Akhmediev, Nail and Magnus Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Physical Review A, Vol. 51, No. 3, 2602, 1995.

17. Brasch, Victor, Michael Geiselmann, Tobias Herr, Grigoriy Lihachev, Martin H. P. Pfeiffer, Michael L. Gorodetsky, and Tobias J. Kippenberg, "Photonic chip–based optical frequency comb using soliton Cherenkov radiation," Science, Vol. 351, No. 6271, 357-360, 2016.

18. Corcoran, Bill, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, "Optical signal processing on a silicon chip at 640Gb/s using slow-light," Optics Express, Vol. 18, No. 8, 7770-7781, 2010.

19. Yariv, Amnon, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electronics Letters, Vol. 36, No. 4, 321-322, 2000.

20. Marcatili, E. A. J., "Bends in optical dielectric guides," Bell System Technical Journal, Vol. 48, No. 7, 2103-2132, 1969.

21. Yariv, Amnon, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electronics Letters, Vol. 36, No. 4, 321-322, 2000.

22. Yariv, Amnon, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photonics Technology Letters, Vol. 14, No. 4, 483-485, 2002.

23. Rabus, D. G., Integrated Ring Resonators, Springer, 2007.

24. Tatian, Berge, "Fitting refractive-index data with the Sellmeier dispersion formula," Applied Optics, Vol. 23, No. 24, 4477-4485, 1984.

25. Fleming, James W., "Dispersion in GeO2-SiO2 glasses," Applied Optics, Vol. 23, No. 24, 4486-4493, 1984.

26. Luke, Kevin, Yoshitomo Okawachi, Michael R. E. Lamont, Alexander L. Gaeta, and Michal Lipson, "Broadband mid-infrared frequency comb generation in a Si3N4 microresonator," Optics Letters, Vol. 40, No. 21, 4823-4826, 2015.

27. Agrawal, G. P., "Nonlinear fiber optics," Nonlinear Science at the Dawn of the 21st Century, 195-211, P. L. Christiansen, M. P. Sorensen, A. C. Scott (eds.), Springer, 2000.

28. Kumar, A. and A. Ghatak, Polarization of Light with Applications in Optical Fibers, SPIE Press, 2011.

29. Turner, Amy C., Christina Manolatou, Bradley S. Schmidt, Michal Lipson, Mark A. Foster, Jay E. Sharping, and Alexander L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Optics Express, Vol. 14, No. 10, 4357-4362, 2006.

30. Luan, Feng, Mark D. Pelusi, Michael R. E. Lamont, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton, "Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals," Optics Express, Vol. 17, No. 5, 3514-3520, 2009.

31. Yang, Ki Youl, Katja Beha, Daniel C. Cole, Xu Yi, Pascal Del'Haye, Hansuek Lee, Jiang Li, Dong Yoon Oh, Scott A. Diddams, Scott B. Papp, and Kerry J. Vahala, "Broadband dispersion-engineered microresonator on a chip," Nature Photonics, Vol. 10, No. 5, 316-320, 2016.

32. Miller, Steven A., Yoshitomo Okawachi, Sven Ramelow, Kevin Luke, Avik Dutt, Alessandro Farsi, Alexander L. Gaeta, and Michal Lipson, "Tunable frequency combs based on dual microring resonators," Optics Express, Vol. 23, No. 16, 21527-21540, 2015.

33. Riemensberger, Johann, Klaus Hartinger, Tobias Herr, Victor Brasch, Ronald Holzwarth, and Tobias J. Kippenberg, "Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition," Optics Express, Vol. 20, No. 25, 27661-27669, 2012.

34. Ramelow, Sven, Alessandro Farsi, Stéphane Clemmen, Jacob S. Levy, Adrea R. Johnson, Yoshitomo Okawachi, Michael. R. E. Lamont, Michal Lipson, and Alexander L. Gaeta, "Strong polarization mode coupling in microresonators," Optics Letters, Vol. 39, No. 17, 5134-5137, 2014.

35. Li, Yu, Jiachen Li, Yuandong Huo, Minghua Chen, Sigang Yang, and Hongwei Chen, "Spatial-mode-coupling-based dispersion engineering for integrated optical waveguide," Optics Express, Vol. 26, No. 3, 2807-2816, 2018.

36. Ferrera, M., D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, "Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million," Optics Express, Vol. 17, No. 16, 14098-14103, 2009.

37. Billington, R., "Effective area of optical fibres definition and measurement techniques", Centre for Optical and Environmental Metrology, National Physical Laboratory (NPL), 1999.

38. Leuthold, Juerg, Christian Koos, and Wolfgang Freude, "Nonlinear silicon photonics," Nature Photonics, Vol. 4, No. 8, 535-544, 2010.

39. Guo, Y., "Dispersion engineering in micro- and nano-optical devices," Ph.D. dissertation, Tianjin University, Tianjin, China, 2020.

40. Jacobsen, Rune S., Karin N. Andersen, Peter I. Borel, Jacob Fage-Pedersen, Lars H. Frandsen, Ole Hansen, Martin Kristensen, Andrei V. Lavrinenko, Gaid Moulin, Haiyan Ou, Christophe Peucheret, Beáta Zsigri, and Anders Bjarklev, "Strained silicon as a new electro-optic material," Nature, Vol. 441, No. 7090, 199-202, 2006.

41. Hochberg, Michael, Thomas Baehr-Jones, Guangxi Wang, Jingqing Huang, Phil Sullivan, Larry Dalton, and Axel Scherer, "Towards a millivolt optical modulator with nano-slot waveguides," Optics Express, Vol. 15, No. 13, 8401-8410, 2007.

42. Baehr-Jones, Tom, Boyan Penkov, Jingqing Huang, Phil Sullivan, Joshua Davies, Jocelyn Takayesu, Jingdong Luo, Tae-Dong Kim, Larry Dalton, Alex Jen, Michael Hochberg, and Axel Scherer, "Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V," Applied Physics Letters, Vol. 92, No. 16, 163303, 2008.

43. Zhang, Xueyue, Qi-Tao Cao, Zhuo Wang, Yu-xi Liu, Cheng-Wei Qiu, Lan Yang, Qihuang Gong, and Yun-Feng Xiao, "Symmetry-breaking-induced nonlinear optics at a microcavity surface," Nature Photonics, Vol. 13, No. 1, 21-24, 2019.

44. Yamada, K., H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technology Letters, Vol. 18, No. 9, 1046-1048, 2006.

45. Olsson, B.-E., Peter Ohlen, Lavanya Rau, and Daniel J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photonics Technology Letters, Vol. 12, No. 7, 846-848, 2000.

46. Ta’eed, Vahid G., Libin Fu, Mark Pelusi, Martin Rochette, Ian C. M. Littler, David J. Moss, and Benjamin J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Optics Express, Vol. 14, No. 22, 10371-10376, 2006.

47. Tangdiongga, E., Y. Liu, H. De Waardt, G. D. Khoe, A. M. J. Koonen, H. J. S. Dorren, X. Shu, and I. Bennion, "All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier," Optics Letters, Vol. 32, No. 7, 835-837, 2007.

48. Li, J., B. Olsson, M. Karlsson, and P. Andrekson, "OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber," Optical Fiber Communication Conference, TuH6, TuH6, Atlanta, GA, USA, Mar. 2003.

49. Ta'eed, Vahid G., Mehrdad Shokooh-Saremi, Libin Fu, Ian C. M. Littler, David J. Moss, Martin Rochette, Benjamin J. Eggleton, Yinlan Ruan, and Barry Luther-Davies, "Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, No. 3, 360-370, 2006.

50. Salem, Reza, Mark A. Foster, Amy C. Turner, David F. Geraghty, Michal Lipson, and Alexander L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics, Vol. 2, No. 1, 35-38, 2008.

51. Willner, Alan E., Zhongqi Pan, and Changyuan Yu, Optical performance monitoring, 233-292 Elsevier, 5th Ed., Elsevier, 2008.

52. Luo, T., Changyuan Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, "All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber," IEEE Photonics Technology Letters, Vol. 18, No. 2, 430-432, 2006.

53. Blows, Justin L., Peifang Hu, and Benjamin J. Eggleton, "Differential group delay monitoring using an all-optical signal spectrum-analyser," Optics Communications, Vol. 260, No. 1, 288-291, 2006.

54. Westbrook, P. S., S. Hunsche, G. Raybon, T. H. Her, and B. J. Eggleton, "Measurement of pulse degradation using all-optical 2R regenerator," Electronics Letters, Vol. 38, No. 20, 1193-1194, 2002.

55. Konishi, Tsuyoshi, Kazunori Tanimura, Kousuke Asano, Yoshinori Oshita, and Yoshiki Ichioka, "All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique," Journal of the Optical Society of America B, Vol. 19, No. 11, 2817-2823, 2002.

56. Lin, Qiang, Jidong Zhang, Philippe M. Fauchet, and Govind P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Optics Express, Vol. 14, No. 11, 4786-4799, 2006.

57. Liu, Qiang, Shiming Gao, Zhiqiang Li, Yanqiao Xie, and Sailing He, "Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion," Applied Optics, Vol. 50, No. 9, 1260-1265, 2011.

58. Corcoran, Bill, Christelle Monat, Christian Grillet, David J. Moss, Benjamin J. Eggleton, Thomas P. White, Liam O'Faolain, and Thomas F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nature Photonics, Vol. 3, No. 4, 206-210, 2009.

59. Absil, P. P., J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Optics Letters, Vol. 25, No. 8, 554-556, 2000.

60. Del’Haye, Pascal, Albert Schliesser, Olivier Arcizet, Tom Wilken, Ronald Holzwarth, and Tobias J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature, Vol. 450, No. 7173, 1214-1217, 2007.

61. Moss, D. J., S. D. Jackson, A. Pasquazi, M. Peccianti, and R. Morandotti, "Hydex glass: A new CMOS compatible platform for all-optical photonic chips," arXiv:1404.5610, Physics. Optics, 2014.

62. Pelusi, Mark, Feng Luan, Trung D. Vo, Michael R. E. Lamont, Steven J. Madden, Douglas A. Bulla, Duk-Yong Choi, Barry Luther-Davies, and Benjamin J. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nature Photonics, Vol. 3, No. 3, 139-143, 2009.

63. Moss, David J., Roberto Morandotti, Alexander L. Gaeta, and Michal Lipson, "New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics," Nature Photonics, Vol. 7, No. 8, 597-607, 2013.

64. Leuthold, J., C. Koos, and W. Freude, "Nonlinear silicon photonics," Nature Photonics, Vol. 4, No. 8, 535-544, 2010.

65. Liu, Y. and H. K. Tsang, "Time dependent density of free carriers generated by two photon absorption in silicon waveguides," Applied Physics Letters, Vol. 90, No. 21, 211105, 2007.

66. Vallaitis, Thomas, Siegwart Bogatscher, Luca Alloatti, Pieter Dumon, Roel Baets, Michelle L. Scimeca, Ivan Biaggio, François Diederich, Christian Koos, Wolfgang Freude, and Juerg Leuthold, "Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries," Optics Express, Vol. 17, No. 20, 17357-17368, 2009.

67. Franken, P. A., A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of optical harmonics," Physical Review Letters, Vol. 7, No. 4, 118, 1961.

68. Bloembergen, N. and P. S. Pershan, "Light waves at the boundary of nonlinear media," Physical Review, Vol. 128, No. 2, 606, 1962.

69. Stolen, R. and J. Bjorkholm, "Parametric amplification and frequency conversion in optical fibers," IEEE Journal of Quantum Electronics, Vol. 18, No. 7, 1062-1072, 1982.

70. Agrawal, G. P., Nonlinear Fiber Optics, sixth Ed., Academic Press, 2019.

71. Stolen, R. H. and H. W. K. Tom, "Self-organized phase-matched harmonic generation in optical fibers," Optics Letters, Vol. 12, No. 8, 585-587, 1987.

72. Tom, H. W. K., R. H. Stolen, G. D. Aumiller, and W. Pleibel, "Preparation of long-coherence-length second-harmonic-generating optical fibers by using mode-locked pulses," Optics Letters, Vol. 13, No. 6, 512-514, 1988.

73. He, G., Nonlinear Optics and Photonics, Shanghai Scientific & Technical Publishers, 2018.

74. Li, Yuhua, Shao Hao Wang, Yayuan Tian, Wai Lok Ho, Yangyang Li, Leiran Wang, Roy R. Davidson, Brent E. Little, and Sai Tak Chu, "Third-harmonic generation in CMOS-compatible highly doped silica micro-ring resonator," Optics Express, Vol. 28, No. 1, 641-651, 2020.

75. Wang, Shaohao, Yuhua Li, Brent E. Little, Leiran Wang, Xiang Wang, Roy R. Davidson, and Sai Tak Chu, "Athermal third harmonic generation in micro-ring resonators," Opto-Electronic Advances, Vol. 3, No. 12, 200028-1, 2020.

76. Wang, Shao Hao, Yuhua Li, Leiran Wang, Brent E. Little, and Sai Tak Chu, "Thermal analysis of visible emission from micro-ring resonators by third-harmonic generation," IEEE Photonics Technology Letters, Vol. 33, No. 5, 235-238, 2021.

77. Liu, Bodong, Huakang Yu, Zhi-yuan Li, and Limin Tong, "Phase-matched second-harmonic generation in coupled nonlinear optical waveguides," Journal of the Optical Society of America B, Vol. 36, No. 10, 2650-2658, 2019.

78. Guo, Hairun, Maxim Karpov, Erwan Lucas, Arne Kordts, Martin H. P. Pfeiffer, Victor Brasch, Grigory Lihachev, Valery E. Lobanov, Michael L. Gorodetsky, and Tobias J. Kippenberg, "Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators," Nature Physics, Vol. 13, No. 1, 94-102, 2017.

79. Bao, Chengying, Yi Xuan, Jose A. Jaramillo-Villegas, Daniel E. Leaird, Minghao Qi, and Andrew M. Weiner, "Direct soliton generation in microresonators," Optics Letters, Vol. 42, No. 13, 2519-2522, 2017.

80. Carmon, Tal, Lan Yang, and Kerry J. Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities," Optics Express, Vol. 12, No. 20, 4742-4750, 2004.

81. Ikeda, Kazuhiro, Robert E. Saperstein, Nikola Alic, and Yeshaiahu Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides," Optics Express, Vol. 16, No. 17, 12987-12994, 2008.

82. Foster, Mark A., Amy C. Turner, Jay E. Sharping, Bradley S. Schmidt, Michal Lipson, and Alexander L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature, Vol. 441, No. 7096, 960-963, 2006.

83. Pu, Minhao, Hao Hu, Luisa Ottaviano, Elizaveta Semenova, Dragana Vukovic, Leif Katsuo Oxenløwe, and Kresten Yvind, "Ultra‐Efficient and broadband nonlinear AlGaAs‐on‐insulator chip for low‐power optical signal processing," Laser & Photonics Reviews, Vol. 12, No. 12, 1800111, 2018.

84. Eggleton, B., S. Radic, D. Moss, I. P. Kaminow, L. Tingye, and A. E. Willner, Optical Fiber Telecommunications V: Components and Sub-Systems, 759-828, Academic Press, 2008.

85. Nozaki, Kengo, Takasumi Tanabe, Akihiko Shinya, Shinji Matsuo, Tomonari Sato, Hideaki Taniyama, and Masaya Notomi, "Sub-femtojoule all-optical switching using a photonic-crystal nanocavity," Nature Photonics, Vol. 4, No. 7, 477-483, 2010.

86. Reimer, Christian, Michael Kues, Piotr Roztocki, Benjamin Wetzel, Fabio Grazioso, Brent E. Little, Sai T. Chu, Tudor Johnston, Yaron Bromberg, Lucia Caspani, et al. "Generation of multiphoton entangled quantum states by means of integrated frequency combs," Science, Vol. 351, No. 6278, 1176-1180, 2016.

87. Kues, Michael, Christian Reimer, Piotr Roztocki, Luis Romero Cortés, Stefania Sciara, Benjamin Wetzel, Yanbing Zhang, Alfonso Cino, Sai T. Chu, Brent E. Little, et al. "On-chip generation of high-dimensional entangled quantum states and their coherent control," Nature, Vol. 546, No. 7660, 622-626, 2017.

88. Wang, Ke-Yao, Keith G. Petrillo, Mark A. Foster, and Amy C. Foster, "Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides," Optics Express, Vol. 20, No. 22, 24600-24606, 2012.

89. Mathlouthi, Walid, Haisheng Rong, and Mario Paniccia, "Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides," Optics Express, Vol. 16, No. 21, 16735-16745, 2008.

90. Wang, Cheng, Mian Zhang, Xi Chen, Maxime Bertrand, Amirhassan Shams-Ansari, Sethumadhavan Chandrasekhar, Peter Winzer, and Marko Lončar, "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Vol. 562, No. 7725, 101-104, 2018.

91. Foster, Mark A., Reza Salem, David F. Geraghty, Amy C. Turner-Foster, Michal Lipson, and Alexander L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature, Vol. 456, No. 7218, 81-84, 2008.

92. Pasquazi, Alessia, Marco Peccianti, Yongwoo Park, Brent E. Little, Sai T. Chu, Roberto Morandotti, José Azaña, and David J. Moss, "Sub-picosecond phase-sensitive optical pulse characterization on a chip," Nature Photonics, Vol. 5, No. 10, 618-623, 2011.

93. Corcoran, Bill, Mengxi Tan, Xingyuan Xu, Andreas Boes, Jiayang Wu, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, "Ultra-dense optical data transmission over standard fibre with a single chip source," Nature Communications, Vol. 11, No. 1, 2568, 2020.

94. Fridman, Moti, Alessandro Farsi, Yoshitomo Okawachi, and Alexander L. Gaeta, "Demonstration of temporal cloaking," Nature, Vol. 481, No. 7379, 62-65, 2012.

95. Little, Brent, "A VLSI photonics platform," Optical Fiber Communication Conference, ThD1, 2003.

96. Ferrera, M., L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, "Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures," Nature Photonics, Vol. 2, No. 12, 737-740, 2008.

97. Grillet, C., L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, "Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability," Optics Express, Vol. 20, No. 20, 22609-22615, 2012.

98. Dinu, Mihaela, Francesco Quochi, and Hugo Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Applied Physics Letters, Vol. 82, No. 18, 2954-2956, 2003.

99. Eggleton, Benjamin J., Barry Luther-Davies, and Kathleen Richardson, "Chalcogenide photonics," Nature Photonics, Vol. 5, No. 3, 141-148, 2011.

100. Lacava, C., V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, "Nonlinear properties of AlGaAs waveguides in continuous wave operation regime," Optics Express, Vol. 22, No. 5, 5291-5298, 2014.

101. Gai, Xin, Ting Han, Amrita Prasad, Steve Madden, Duk-Yong Choi, Rongping Wang, Douglas Bulla, and Barry Luther-Davies, "Progress in optical waveguides fabricated from chalcogenide glasses," Optics Express, Vol. 18, No. 25, 26635-26646, 2010.

102. Lu, Juanjuan, Joshua B. Surya, Xianwen Liu, Yuntao Xu, and Hong X. Tang, "Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides," Optics Letters, Vol. 44, No. 6, 1492-1495, 2019.

103. DeSalvo, Richard, Ali A Said, David J. Hagan, Eric W. Van Stryland, and Mansoor Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n/sub 2/in wide bandgap solids," IEEE Journal of Quantum Electronics, Vol. 32, No. 8, 1324-1333, 1996.

104. Tan, D. T. H., K. Ikeda, P. C. Sun, and Y. Fainman, "Group velocity dispersion and self phase modulation in silicon nitride waveguides," Applied Physics Letters, Vol. 96, No. 6, 061101, 2010.

105. Levy, Jacob S., Alexander Gondarenko, Mark A. Foster, Amy C. Turner-Foster, Alexander L. Gaeta, and Michal Lipson, "CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects," Nature Photonics, Vol. 4, No. 1, 37-40, 2010.

106. Hausmann, B. J. M., I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, "Diamond nonlinear photonics," Nature Photonics, Vol. 8, No. 5, 369-374, 2014.

107. Duchesne, David, Marcello Ferrera, Luca Razzari, Roberto Morandotti, Brent E. Little, Sai T. Chu, and David J. Moss, "Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides," Optics Express, Vol. 17, No. 3, 1865-1870, 2009.

108. Duchesne, D., M. Ferrera, L. Razzari, R. Morandotti, B. Little, S. T. Chu, and D. J. Moss, "Hydex glass: A CMOS compatible platform for integrated waveguide structures for nonlinear optics," arXiv preprint arXiv:1505.05953, 2015.

109. Yin, Lianghong, Study of Nonlinear Optical Effects in Silicon Waveguides, University of Rochester, 2009.

110. Hon, Nick K., Kevin K. Tsia, Daniel R. Solli, and Bahram Jalali, "Periodically poled silicon," Applied Physics Letters, Vol. 94, No. 9, 091116, 2009.

111. Koonath, Prakash, Daniel R. Solli, and Bahram Jalali, "Broadband coherent anti-Stokes Raman scattering in silicon," Optics Letters, Vol. 35, No. 3, 351-353, 2010.

112. Mallari, Jonathan, Cailin Wei, Dan Jin, Guomin Yu, Anna Barklund, Eric Miller, Padraig O’Mathuna, Raluca Dinu, Ali Motafakker-Fard, and Bahram Jalali, "100Gbps EO polymer modulator product and its characterization using a real-time digitizer," Optical Fiber Communication Conference, OThU2, 2010.

113. Wang, Xiaokun, Xiaowei Guan, Qiangsheng Huang, Jiajiu Zheng, Yaocheng Shi, and Daoxin Dai, "Suspended ultra-small disk resonator on silicon for optical sensing," Optics Letters, Vol. 38, No. 24, 5405-5408, 2013.

114. Gorodetsky, Mikhail L., Anatoly A. Savchenkov, and Vladimir S. Ilchenko, "Ultimate Q of optical microsphere resonators," Optics Letters, Vol. 21, No. 7, 453-455, 1996.

115. Gorodetsky, Michael L., Andrew D. Pryamikov, and Vladimir S. Ilchenko, "Rayleigh scattering in high-Q microspheres," Journal of the Optical Society of America B, Vol. 17, No. 6, 1051-1057, 2000.

116. Vernooy, D. W., Vladimir S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Optics Letters, Vol. 23, No. 4, 247-249, 1998.

117. Agha, Imad H., Yoshitomo Okawachi, and Alexander L. Gaeta, "Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres," Optics Express, Vol. 17, No. 18, 16209-16215, 2009.

118. Schiller, Stephan and R. L. Byer, "High-resolution spectroscopy of whispering gallery modes in large dielectric spheres," Optics Letters, Vol. 16, No. 15, 1138-1140, 1991.

119. Borisova, Z., Glassy Semiconductors, Springer Science & Business Media, 2013.

120. Wang, Yingying and Shixun Dai, "Mid-infrared supercontinuum generation in chalcogenide glass fibers: A brief review," PhotoniX, Vol. 2, No. 1, 9, 2021.

121. Quémard, C., F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," Journal of Physics and Chemistry of Solids, Vol. 62, No. 8, 1435-1440, 2001.

122. Harbold, J. M., F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, "Highly nonlinear As-S-Se glasses for all-optical switching," Optics Letters, Vol. 27, No. 2, 119-121, 2002.

123. Prasad, Amrita, Cong-Ji Zha, Rong-Ping Wang, Anita Smith, Steve Madden, and Barry Luther-Davies, "Properties of GexAsySe1-xy glasses for all-optical signal processing," Optics Express, Vol. 16, No. 4, 2804-2815, 2008.

124. Gopinath, Juliet T., Marin Soljačić, Erich P. Ippen, Vladimir N. Fuflyigin, Wesley A. King, and Max Shurgalin, "Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications," Journal of Applied Physics, Vol. 96, No. 11, 6931-6933, 2004.

125. Frerichs, Rudolf, "New optical glasses with good transparency in the infrared," Journal of the Optical Society of America, Vol. 43, No. 12, 1153-1157, 1953.

126. Hilton, A. R. and S. Kemp, Chalcogenide Glasses for Infrared Optics, McGraw-Hill, New York, 2010.

127. Suzuki, K., Y. Hamachi, and T. Baba, "Nonlinear photonic crystal waveguide with chalcogenide glass," 2009 IEEE LEOS Annual Meeting Conference Proceedings, 823-824, Belek-Antalya, Turkey, Oct. 2009.

128. Ta’eed, Vahid G., Neil J. Baker, Libin Fu, Klaus Finsterbusch, Michael R. E. Lamont, David J. Moss, Hong C. Nguyen, Benjamin J. Eggleton, Duk Yong Choi, Steven Madden, and Barry Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Optics Express, Vol. 15, No. 15, 9205-9221, 2007.

129. Yeom, Dong-Il, Eric C. Mägi, Michael R. E. Lamont, Michaël A. F. Roelens, Libin Fu, and Benjamin J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Optics Letters, Vol. 33, No. 7, 660-662, 2008.

130. Lamont, Michael R. E., C. Martijn de Sterke, and Benjamin J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Optics Express, Vol. 15, No. 15, 9458-9463, 2007.

131. Yu, Yi, Xin Gai, Pan Ma, Khu Vu, Zhiyong Yang, Rongping Wang, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies, "Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide," Optics Letters, Vol. 41, No. 5, 958-961, 2016.

132. Gai, Xin, "Mid-infrared waveguides and applications," CLEO Pacific Rim Conference 2018, Tu3E-2, 2018.

133. Levy, Jacob S., Kasturi Saha, Yoshitomo Okawachi, Mark A. Foster, Alexander L. Gaeta, and Michal Lipson, "High-performance silicon-nitride-based multiple-wavelength source," IEEE Photonics Technology Letters, Vol. 24, No. 16, 1375-1377, 2012.

134. Herr, Tobias, Klaus Hartinger, Johann Riemensberger, Christine Y. Wang, Emanuel Gavartin, Ronald Holzwarth, Michael L. Gorodetsky, and Tobias J. Kippenberg, "Universal formation dynamics and noise of Kerr-frequency combs in microresonators," Nature Photonics, Vol. 6, No. 7, 480-487, 2012.

135. Okawachi, Yoshitomo, Kasturi Saha, Jacob S. Levy, Y. Henry Wen, Michal Lipson, and Alexander L. Gaeta, "Octave-spanning frequency comb generation in a silicon nitride chip," Optics Letters, Vol. 36, No. 17, 3398-3400, 2011.

136. Johnson, Adrea R., Yoshitomo Okawachi, Jacob S. Levy, Jaime Cardenas, Kasturi Saha, Michal Lipson, and Alexander L. Gaeta, "Chip-based frequency combs with sub-100 GHz repetition rates," Optics Letters, Vol. 37, No. 5, 875-877, 2012.

137. Ferdous, Fahmida, Houxun Miao, Daniel E. Leaird, Kartik Srinivasan, Jian Wang, Lei Chen, Leo Tom Varghese, and Andrew M. Weiner, "Spectral line-by-line pulse shaping of on-chip microresonator frequency combs," Nature Photonics, Vol. 5, No. 12, 770-776, 2011.

138. Kippenberg, Tobias J., Ronald Holzwarth, and Scott A. Diddams, "Microresonator-based optical frequency combs," Science, Vol. 332, No. 6029, 555-559, 2011.

139. Saha, Kasturi, Yoshitomo Okawachi, Bonggu Shim, Jacob S. Levy, Reza Salem, Adrea R. Johnson, Mark A. Foster, Michael R. E. Lamont, Michal Lipson, and Alexander L. Gaeta, "Modelocking and femtosecond pulse generation in chip-based frequency combs," Optics Express, Vol. 21, No. 1, 1335-1343, 2013.

140. Wang, Leiran, Lin Chang, Nicolas Volet, Martin H. P. Pfeiffer, Michael Zervas, Hairun Guo, Tobias J. Kippenberg, and John E. Bowers, "Frequency comb generation in the green using silicon nitride microresonators," Laser & Photonics Reviews, Vol. 10, No. 4, 631-638, 2016.

141. Pfeiffer, Martin H. P., Arne Kordts, Victor Brasch, Michael Zervas, Michael Geiselmann, John D. Jost, and Tobias J. Kippenberg, "Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics," Optica, Vol. 3, No. 1, 20-25, 2016.

142. Liu, Junqiu, Arslan S. Raja, Maxim Karpov, Bahareh Ghadiani, Martin H. P. Pfeiffer, Botao Du, Nils J. Engelsen, Hairun Guo, Michael Zervas, and Tobias J. Kippenberg, "Ultralow-power chip-based soliton microcombs for photonic integration," Optica, Vol. 5, No. 10, 1347-1353, 2018.

143. Liu, Junqiu, Guanhao Huang, Rui Ning Wang, Jijun He, Arslan S. Raja, Tianyi Liu, Nils J. Engelsen, and Tobias J. Kippenberg, "High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits," Nature Communications, Vol. 12, No. 1, 2236, 2021.

144. Ye, Zhichao, Haiyan Jia, Zhangjun Huang, Chen Shen, Jinbao Long, Baoqi Shi, Yi-Han Luo, Lan Gao, Wei Sun, Hairun Guo, Jijun He, and Junqiu Liu, "Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits," Photonics Research, Vol. 11, No. 4, 558-568, 2023.

145. Ji, Xingchen, Samantha Roberts, Mateus Corato-Zanarella, and Michal Lipson, "Methods to achieve ultra-high quality factor silicon nitride resonators," APL Photonics, Vol. 6, No. 7, 071101, 2021.

146. Kim, Sangsik, Kyunghun Han, Cong Wang, Jose A. Jaramillo-Villegas, Xiaoxiao Xue, Chengying Bao, Yi Xuan, Daniel E. Leaird, Andrew M. Weiner, and Minghao Qi, "Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators," Nature Communications, Vol. 8, No. 1, 372, 2017.

147. Ji, Xingchen, Felippe A. S. Barbosa, Samantha P. Roberts, Avik Dutt, Jaime Cardenas, Yoshitomo Okawachi, Alex Bryant, Alexander L. Gaeta, and Michal Lipson, "Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold," Optica, Vol. 4, No. 6, 619-624, 2017.

148. Hosseini, Ehsan Shah, Siva Yegnanarayanan, Amir Hossein Atabaki, Mohammad Soltani, and Ali Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visiblewavelength range," Optics Express, Vol. 17, No. 17, 14543-14551, 2009.

149. Domeneguetti, Renato R., Yun Zhao, Xingchen Ji, Marcelo Martinelli, Michal Lipson, Alexander L. Gaeta, and Paulo Nussenzveig, "Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths," Optica, Vol. 8, No. 3, 316-322, 2021.

150. Wang, Weiqiang, Wenfu Zhang, Sai T. Chu, Brent E. Little, Qinghua Yang, Leiran Wang, Xiaohong Hu, Lei Wang, Guoxi Wang, Yishan Wang, and Wei Zhao, "Repetition rate multiplication pulsed laser source based on a microring resonator," ACS Photonics, Vol. 4, No. 7, 1677-1683, 2017.

151. Li, Yuhua, Zhe Kang, Kun Zhu, Shiqi Ai, Xiang Wang, Roy R. Davidson, Yan Wu, Roberto Morandotti, Brent E. Little, David J. Moss, and Sai Tak Chu, "All-optical RF spectrum analyzer with a 5 THz bandwidth based on CMOS-compatible high-index doped silica waveguides," Optics Letters, Vol. 46, No. 7, 1574-1577, 2021.

152. Little, Brent E., Sai T. Chu, Hermann A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," Journal of Lightwave Technology, Vol. 15, No. 6, 998-1005, 1997.

153. Hryniewicz, J. V., P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, "Higher order filter response in coupled microring resonators," IEEE Photonics Technology Letters, Vol. 12, No. 3, 320-322, 2000.

154. Chu, Sai Tak, Brent E. Little, Wugen Pan, Taro Kaneko, and Yasuo Kokubun, "Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters," IEEE Photonics Technology Letters, Vol. 11, No. 11, 1423-1425, 1999.

155. Chu, Sai Tak, Brent E. Little, Wugen Pan, Taro Kaneko, and Yasuo Kokubun, "Second-order filter response from parallel coupled glass microring resonators," IEEE Photonics Technology Letters, Vol. 11, No. 11, 1426-1428, 1999.

156. Djordjev, K., Seung-June Choi, Sang-Jun Choi, and R. D. Dapkus, "Microdisk tunable resonant filters and switches," IEEE Photonics Technology Letters, Vol. 14, No. 6, 828-830, 2002.

157. Peccianti, M., A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Demonstration of a stable ultrafast laser based on a nonlinear microcavity," Nature Communications, Vol. 3, No. 1, 765, 2012.

158. Pasquazi, Alessia, Marco Peccianti, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti, "Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator," Optics Express, Vol. 20, No. 24, 27355-27363, 2012.

159. Bao, Hualong, Andrew Cooper, Sai T. Chu, Dave J. Moss, Roberto Morandotti, Brent E. Little, Marco Peccianti, and Alessia Pasquazi, "Type-II micro-comb generation in a filter-driven four wave mixing laser," Photonics Research, Vol. 6, No. 5, B67-B73, 2018.

160. Wang, Weiqiang, Zhizhou Lu, Wenfu Zhang, Sai T. Chu, Brent E. Little, Leiran Wang, Xiaoping Xie, Mulong Liu, Qinghua Yang, Lei Wang, et al. "Robust soliton crystals in a thermally controlled microresonator," Optics Letters, Vol. 43, No. 9, 2002-2005, 2018.

161. Bao, Hualong, Andrew Cooper, Maxwell Rowley, Luigi Di Lauro, Juan Sebastian Totero Gongora, Sai T. Chu, Brent E. Little, Gian-Luca Oppo, Roberto Morandotti, David J. Moss, et al. "Laser cavity-soliton microcombs," Nature Photonics, Vol. 13, No. 6, 384-389, 2019.

162. Li, Guixin, Shuang Zhang, and Thomas Zentgraf, "Nonlinear photonic metasurfaces," Nature Reviews Materials, Vol. 2, No. 5, 1-14, 2017.

163. Winterfeldt, Carsten, Christian Spielmann, and Gustav Gerber, "Colloquium: Optimal control of high-harmonic generation," Reviews of Modern Physics, Vol. 80, No. 1, 117-140, 2008.

164. Sohler, W., B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, "Integrated optical parametric devices," Journal of Lightwave Technology, Vol. 4, No. 7, 772-777, 1986.

165. Yoshikawa, Naotaka, Tomohiro Tamaya, and Koichiro Tanaka, "High-harmonic generation in graphene enhanced by elliptically polarized light excitation," Science, Vol. 356, No. 6339, 736-738, 2017.

166. Zuo, Yonggang, Wentao Yu, Can Liu, Xu Cheng, Ruixi Qiao, Jing Liang, Xu Zhou, Jinhuan Wang, Muhong Wu, Yun Zhao, et al. "Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity," Nature Nanotechnology, Vol. 15, No. 12, 987-991, 2020.

167. Carmon, Tal and Kerry J. Vahala, "Visible continuous emission from a silica microphotonic device by third-harmonic generation," Nature Physics, Vol. 3, No. 6, 430-435, 2007.

168. Farnesi, D., A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, "Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators," Physical Review Letters, Vol. 112, No. 9, 093901, 2014.

169. Asano, M., S. Komori, R. Ikuta, N. Imoto, Ş. K. Özdemir, and T. Yamamoto, "Visible light emission from a silica microbottle resonator by second-and third-harmonic generation," Optics Letters, Vol. 41, No. 24, 5793-5796, 2016.

170. Sederberg, S. and A. Y. Elezzabi, "Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via third-harmonic conversion," Physical Review Letters, Vol. 114, No. 22, 227401, 2015.

171. Sasagawa, Kiyotaka and Masahiro Tsuchiya, "Highly efficient third harmonic generation in a periodically poled MgO: LiNbO3 disk resonator," Applied Physics Express, Vol. 2, No. 12, 122401, 2009.

172. Ning, Tingyin, Outi Hyvärinen, Henna Pietarinen, Tommi Kaplas, Martti Kauranen, and Göery Genty, "Third-harmonic UV generation in silicon nitride nanostructures," Optics Express, Vol. 21, No. 2, 2012-2017, 2013.

173. Surya, Joshua B., Xiang Guo, Chang-Ling Zou, and Hong X. Tang, "Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings," Optica, Vol. 5, No. 2, 103-108, 2018.

174. Wu, Tingting, Perry Ping Shum, Xuguang Shao, Yunxu Sun, Tinaye Huang, and Lei Wei, "Efficient phase-matched third harmonic generation in a metal-clad plasmonic double-slot waveguide," Journal of Optics, Vol. 17, No. 2, 025506, 2015.

175. Armstrong, J. A., N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Physical Review, Vol. 127, No. 6, 1918, 1962.

176. Yu, X., L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, "Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phase-matched AlGaAs waveguides," Optics Express, Vol. 13, No. 26, 10742-10748, 2005.

177. Hutchings, David C., Sean J. Wagner, Barry M. Holmes, Usman Younis, Amr S. Helmy, and J. Stewart Aitchison, "Type-II quasi phase matching in periodically intermixed semiconductor superlattice waveguides," Optics Letters, Vol. 35, No. 8, 1299-1301, 2010.

178. Chowdhury, Aref and Leon McCaughan, "Continuously phase-matched M-waveguides for second-order nonlinear upconversion," IEEE Photonics Technology Letters, Vol. 12, No. 5, 486-488, 2000.

179. Kim, Tae Woong, Tomonori Matsushita, and Takashi Kondo, "Phase-matched second-harmonic generation in thin rectangular high-index-contrast AlGaAs waveguides," Applied Physics Express, Vol. 4, No. 8, 082201, 2011.

180. Duchesne, D., K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, "Second harmonic generation in AlGaAs photonic wires using low power continuous wave light," Optics Express, Vol. 19, No. 13, 12408-12417, 2011.

181. Blau, G., E. Popov, F. Kajzar, A. Raimond, J. F. Roux, and J. L. Coutaz, "Grating-assisted phase-matched second-harmonic generation from a polymer waveguide," Optics Letters, Vol. 20, No. 10, 1101-1103, 1995.

182. Ning, Tingyin, Henna Pietarinen, Outi Hyvärinen, Ravi Kumar, Tommi Kaplas, Martti Kauranen, and Goëry Genty, "Efficient second-harmonic generation in silicon nitride resonant waveguide gratings," Optics Letters, Vol. 37, No. 20, 4269-4271, 2012.

183. Cazzanelli, M., F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, "Second-harmonic generation in silicon waveguides strained by silicon nitride," Nature Materials, Vol. 11, No. 2, 148-154, 2012.

184. Puckett, Matthew W., Rajat Sharma, Hung-Hsi Lin, Mu-han Yang, Felipe Vallini, and Yeshaiahu Fainman, "Observation of second-harmonic generation in silicon nitride waveguides through bulk nonlinearities," Optics Express, Vol. 24, No. 15, 16923-16933, 2016.

185. Chen, Hao-Jing, Qing-Xin Ji, Heming Wang, Qi-Fan Yang, Qi-Tao Cao, Qihuang Gong, Xu Yi, and Yun-Feng Xiao, "Chaos-assisted two-octave-spanning microcombs," Nature Communications, Vol. 11, No. 1, 2336, 2020.

186. Nitiss, Edgars, Ozan Yakar, Anton Stroganov, and Camille-Sophie Brès, "Highly tunable second-harmonic generation in all-optically poled silicon nitride waveguides," Optics Letters, Vol. 45, No. 7, 1958-1961, 2020.

187. Clementi, Marco, Edgars Nitiss, Junqiu Liu, Elena Durán-Valdeiglesias, Sofiane Belahsene, Hélène Debrégeas, Tobias J. Kippenberg, and Camille-Sophie Brès, "A chip-scale second-harmonic source via self-injection-locked all-optical poling," Light: Science & Applications, Vol. 12, No. 1, 296, 2023.

188. Smith, Jack A., Henry Francis, Gabriele Navickaite, and Michael J. Strain, "Sin foundry platform for high performance visible light integrated photonics," Optical Materials Express, Vol. 13, No. 2, 458-468, 2023.

189. Li, Yuhua, Shao Hao Wang, Wai Lok Ho, Xiaotian Zhu, Xiang Wang, Roy R. Davidson, Brent E. Little, Rui-Pin Chen, and Sai Tak Chu, "Second-harmonic generation in a high-index doped silica micro-ring resonator," Optics Letters, Vol. 47, No. 15, 3884-3887, 2022.

190. Jung, Hojoong, Rebecca Stoll, Xiang Guo, Debra Fischer, and Hong X. Tang, "Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator," Optica, Vol. 1, No. 6, 396-399, 2014.

191. Ilchenko, Vladimir S., Anatoliy A. Savchenkov, Andrey B. Matsko, and Lute Maleki, "Nonlinear optics and crystalline whispering gallery mode cavities," Physical Review Letters, Vol. 92, No. 4, 043903, 2004.

192. Rao, Ashutosh, Jeff Chiles, Saeed Khan, Seyfollah Toroghi, Marcin Malinowski, Guillermo Fernando Camacho-González, and Sasan Fathpour, "Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation," Applied Physics Letters, Vol. 110, No. 11, 111109, 2017.

193. Schmidt, Jan, Agnes Merkle, B. Hoex, M. C. M. Van De Sanden, W. M. M. Kessels, and Rolf Brendel, "Atomic-layer-deposited aluminum oxide for the surface passivation of high-efficiency silicon solar cells," 2008 33rd IEEE Photovoltaic Specialists Conference, 1-5, IEEE, San Diego, CA, USA, May 2008.

194. Guha, Biswarup, Felix Marsault, Fabian Cadiz, Laurence Morgenroth, Vladimir Ulin, Vladimir Berkovitz, Aristide Lemaître, Carmen Gomez, Alberto Amo, Sylvain Combrié, Bruno Gérard, Giuseppe Leo, and Ivan Favero, "Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106," Optica, Vol. 4, No. 2, 218-221, 2017.

195. Guo, Xiang, Chang-Ling Zou, and Hong X. Tang, "Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency," Optica, Vol. 3, No. 10, 1126-1131, 2016.

196. Little, Brent E., Juha-Pekka Laine, and Sai T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Optics Letters, Vol. 22, No. 1, 4-6, 1997.

197. Fürst, J. U., D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, "Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator," Physical Review Letters, Vol. 104, No. 15, 153901, 2010.

198. Xiong, Chi, Wolfram Pernice, Kevin K. Ryu, Carsten Schuck, King Y. Fong, Tomas Palacios, and Hong X. Tang, "Integrated GaN photonic circuits on silicon (100) for second harmonic generation," Optics Express, Vol. 19, No. 11, 10462-10470, 2011.

199. Pernice, W. H. P., C. Xiong, C. Schuck, and H. X. Tang, "Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators," Applied Physics Letters, Vol. 100, No. 22, 223501, 2012.

200. Lin, Guoping, Josef U. Fürst, Dmitry V. Strekalov, and Nan Yu, "Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators," Applied Physics Letters, Vol. 103, No. 18, 181107, 2013.

201. Lake, David P., Matthew Mitchell, Harishankar Jayakumar, Laís Fujii dos Santos, Davor Curic, and Paul E. Barclay, "Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks," Applied Physics Letters, Vol. 108, No. 3, 031109 2016.

202. Roland, I., M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli, X. Checoury, and P. Boucaud, "Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks," Scientific Reports, Vol. 6, No. 1, 34191, 2016.

203. Billat, Adrien, Davide Grassani, Martin H. P. Pfeiffer, Svyatoslav Kharitonov, Tobias J. Kippenberg, and Camille-Sophie Brès, "Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching," Nature Communications, Vol. 8, No. 1, 1016, 2017.

204. Liu, Shijie, Yuanlin Zheng, and Xianfeng Chen, "Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk," Optics Letters, Vol. 42, No. 18, 3626-3629, 2017.

205. Bruch, Alexander W., Xianwen Liu, Xiang Guo, Joshua B. Surya, Zheng Gong, Liang Zhang, Junxi Wang, Jianchang Yan, and Hong X. Tang, "17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators," Applied Physics Letters, Vol. 113, No. 13, 131102, 2018.

206. Chen, Jia-Yang, Zhao-Hui Ma, Yong Meng Sua, Zhan Li, Chao Tang, and Yu-Ping Huang, "Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings," Optica, Vol. 6, No. 9, 1244-1245, 2019.

207. Lu, Xiyuan, Gregory Moille, Qing Li, Daron A. Westly, Anshuman Singh, Ashutosh Rao, Su-Peng Yu, Travis C. Briles, Scott B. Papp, and Kartik Srinivasan, "Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics," Nature Photonics, Vol. 13, No. 9, 593-601, 2019.

208. Lin, Jintian, Ni Yao, Zhenzhong Hao, Jianhao Zhang, Wenbo Mao, Min Wang, Wei Chu, Rongbo Wu, Zhiwei Fang, Lingling Qiao, Wei Fang, Fang Bo, and Ya Cheng, "Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator," Physical Review Letters, Vol. 122, No. 17, 173903, 2019.

209. Luo, Rui, Yang He, Hanxiao Liang, Mingxiao Li, Jingwei Ling, and Qiang Lin, "Optical parametric generation in a lithium niobate microring with modal phase matching," Physical Review Applied, Vol. 11, No. 3, 034026, 2019.

210. Grassani, Davide, Martin H. P. Pfeiffer, Tobias J. Kippenberg, and Camille-Sophie Brès, "Second- and third-order nonlinear wavelength conversion in an all-optically poled Si3N4 waveguide," Optics Letters, Vol. 44, No. 1, 106-109, 2019.

211. Lukin, Daniil M., Constantin Dory, Melissa A. Guidry, Ki Youl Yang, Sattwik Deb Mishra, Rahul Trivedi, Marina Radulaski, Shuo Sun, Dries Vercruysse, Geun Ho Ahn, and Jelena Vučković, "4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics," Nature Photonics, Vol. 14, No. 5, 330-334, 2020.

212. Hosseini, Ehsan Shah, Siva Yegnanarayanan, Amir Hossein Atabaki, Mohammad Soltani, and Ali Adibi, "Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths," Optics Express, Vol. 18, No. 3, 2127-2136, 2010.

213. Pereira, S. F., Min Xiao, H. J. Kimble, and J. L. Hall, "Generation of squeezed light by intracavity frequency doubling," Physical Review A, Vol. 38, No. 9, 4931, 1988.