Vol. 182
Latest Volume
All Volumes
PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2025-02-07
Emergence of Diffractive Phenomena in Finite Arrays of Subwavelength Scatterers (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 182, 63-75, 2025
Abstract
Periodic optical structures, such as diffraction gratings and numerous photonic crystals, are one of the staples of modern nanophotonics for the manipulation of electromagnetic radiation. The array of subwavelength dielectric rods is one of the simplest platforms, which, despite its simplicity exhibits extraordinary wave phenomena, such as diffraction anomalies and narrow reflective resonances. Despite the well-documented properties of infinite periodic systems, the behavior of these diffractive effects in systems incorporating a finite number of elements is studied to a far lesser extent. Here, we theoretically and numerically study the evolution of collective spectral features in finite arrays of dielectric rods. We develop an analytical model of light scattering by a finite array of circular rods based on the coupled dipoles approximation and analyze the spectral features of finite arrays within the developed model. Finally, we validate the results of the analytical model using full-wave numerical simulations.
Supplementary Information
Citation
Ilya Igorevich Karavaev, Ravshanjon Nazarov, Yicheng Li, Andrey A. Bogdanov, and Denis G. Baranov, "Emergence of Diffractive Phenomena in Finite Arrays of Subwavelength Scatterers (Invited Paper)," Progress In Electromagnetics Research, Vol. 182, 63-75, 2025.
doi:10.2528/PIER24121104
References

1. García de Abajo, F. J., "Colloquium: Light scattering by particle and hole arrays," Reviews of Modern Physics, Vol. 79, No. 4, 1267-1290, 2007.

2. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 6668, 667-669, 1998.
doi:10.1038/35570

3. Martín-Moreno, L., F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Physical Review Letters, Vol. 86, No. 6, 1114, 2001.

4. Silveirinha, Mário G., Pavel A. Belov, and Constantin R. Simovski, "Subwavelength imaging at infrared frequencies using an array of metallic nanorods," Physical Review B --- Condensed Matter and Materials Physics, Vol. 75, No. 3, 035108, 2007.

5. Ono, Atsushi, Jun-Ichi Kato, and Satoshi Kawata, "Subwavelength optical imaging through a metallic nanorod array," Physical Review Letters, Vol. 95, No. 26, 267407, 2005.

6. Rayleigh, L., "III. Note on the remarkable case of diffraction spectra described by Prof. Wood," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 14, No. 79, 60-65, 1907.

7. Wood, R. W., "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 4, No. 21, 396-402, 1902.

8. Auguié, Baptiste and William L. Barnes, "Collective resonances in gold nanoparticle arrays," Physical Review Letters, Vol. 101, No. 14, 143902, 2008.

9. Manjavacas, Alejandro, Lauren Zundel, and Stephen Sanders, "Analysis of the limits of the near-field produced by nanoparticle arrays," ACS Nano, Vol. 13, No. 9, 10682-10693, 2019.

10. Marinica, D. C., A. G. Borisov, and S. V. Shabanov, "Bound states in the continuum in photonics," Physical Review Letters, Vol. 100, No. 18, 183902, 2008.

11. Zhen, Bo, Chia Wei Hsu, Ling Lu, A. Douglas Stone, and Marin Soljačić, "Topological nature of optical bound states in the continuum," Physical Review Letters, Vol. 113, No. 25, 257401, 2014.

12. Koshelev, K. L., Zarina Fail'evna Sadrieva, Alexey Aleksandrovich Shcherbakov, Yurii Semenovich Kivshar, and A. A. Bogdanov, "Bound states in the continuum in photonic structures," Phys.-USP, Vol. 93, 528-553, 2023.

13. Joseph, Shereena, Saurabh Pandey, Swagato Sarkar, and Joby Joseph, "Bound states in the continuum in resonant nanostructures: An overview of engineered materials for tailored applications," Nanophotonics, Vol. 10, No. 17, 4175-4207, 2021.

14. Maslova, Ekaterina E., Mikhail V. Rybin, Andrey A. Bogdanov, and Zarina F. Sadrieva, "Bound states in the continuum in periodic structures with structural disorder," Nanophotonics, Vol. 10, No. 17, 4313-4321, 2021.

15. Kang, Meng, Li Mao, Shunping Zhang, Meng Xiao, Hongxing Xu, and Che Ting Chan, "Merging bound states in the continuum by harnessing higher-order topological charges," Light: Science & Applications, Vol. 11, No. 1, 228, 2022.

16. Hwang, Min-Soo, Kwang-Yong Jeong, Jae-Pil So, Kyoung-Ho Kim, and Hong-Gyu Park, "Nanophotonic nonlinear and laser devices exploiting bound states in the continuum," Communications Physics, Vol. 5, No. 1, 106, 2022.

17. Kang, Meng, Tao Liu, C. T. Chan, and Meng Xiao, "Applications of bound states in the continuum in photonics," Nature Reviews Physics, Vol. 5, No. 11, 659-678, 2023.

18. Gomez-Medina, Raquel, Marine Laroche, and Juan José Sáenz, "Extraordinary optical reflection from sub-wavelength cylinder arrays," Optics Express, Vol. 14, No. 9, 3730-3737, 2006.

19. Borisov, A. G., F. J. García de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Physical Review B, Vol. 71, No. 7, 075408, 2005.

20. Laroche, Marine, Silvia Albaladejo, Raquel Gómez-Medina, and Juan José Sáenz, "Tuning the optical response of nanocylinder arrays: An analytical study," Physical Review B, Vol. 74, No. 24, 245422, 2006.

21. Laroche, Marine, Silvia Albaladejo, Rémi Carminati, and Juan José Sáenz, "Optical resonances in one-dimensional dielectric nanorod arrays: Field-induced fluorescence enhancement," Optics Letters, Vol. 32, No. 18, 2762-2764, 2007.

22. Du, Junjie, Zhifang Lin, S. T. Chui, Guangjiong Dong, and Weiping Zhang, "Nearly total omnidirectional reflection by a single layer of nanorods," Physical Review Letters, Vol. 110, No. 16, 163902, 2013.

23. Ghenuche, Petru, Grégory Vincent, Marine Laroche, Nathalie Bardou, Riad Haïdar, Jean-Luc Pelouard, and Stéphane Collin, "Optical extinction in a single layer of nanorods," Physical Review Letters, Vol. 109, No. 14, 143903, 2012.

24. Evlyukhin, Andrey B., Carsten Reinhardt, Andreas Seidel, Boris S. Luk'yanchuk, and Boris N. Chichkov, "Optical response features of Si-nanoparticle arrays," Physical Review B, Vol. 82, No. 4, 045404, 2010.

25. Evlyukhin, Andrey B., Carsten Reinhardt, Urs Zywietz, and Boris N. Chichkov, "Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions," Physical Review B, Vol. 85, No. 24, 245411, 2012.

26. Zundel, Lauren and Alejandro Manjavacas, "Finite-size effects on periodic arrays of nanostructures," Journal of Physics: Photonics, Vol. 1, No. 1, 015004, 2018.

27. Sung, Jiha, Erin M. Hicks, Richard P. Van Duyne, and Kenneth G. Spears, "Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles," The Journal of Physical Chemistry C, Vol. 112, No. 11, 4091-4096, 2008.

28. Zakomirnyi, V. I., A. E. Ershov, V. S. Gerasimov, S. V. Karpov, H. Ågren, and I. L. Rasskazov, "Collective lattice resonances in arrays of dielectric nanoparticles: A matter of size," Optics Letters, Vol. 44, No. 23, 5743-5746, 2019.

29. Karimi, Vahid and Viktoriia E. Babicheva, "Dipole-lattice nanoparticle resonances in finite arrays," Optics Express, Vol. 31, No. 10, 16857-16871, 2023.

30. Schokker, A. Hinke and A. Femius Koenderink, "Statistics of randomized plasmonic lattice lasers," ACS Photonics, Vol. 2, No. 9, 1289-1297, 2015.

31. Hakala, T. K., H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, "Lasing in dark and bright modes of a finite-sized plasmonic lattice," Nature Communications, Vol. 8, No. 1, 13687, 2017.

32. Wang, Danqing, Marc R. Bourgeois, Jun Guan, Ahmad K. Fumani, George C. Schatz, and Teri W. Odom, "Lasing from finite plasmonic nanoparticle lattices," ACS Photonics, Vol. 7, No. 3, 630-636, 2020.

33. Ustimenko, Nikita, Carsten Rockstuhl, and Andrey B. Evlyukhin, "Resonances in finite-size all-dielectric metasurfaces for light trapping and propagation control," Physical Review B, Vol. 109, No. 11, 115436, 2024.

34. Hoang, Thanh Xuan, Daniel Leykam, Hong-Son Chu, Ching Eng Png, Francisco J. Garcıa-Vidal, and Yuri S. Kivshar, "Collective nature of high-Q resonances in finite-size photonic metastructures," arXiv preprint arXiv:2405.01034, 2024.

35. Volkov, Ilya A., Nikita A. Ustimenko, Danil F. Kornovan, Alexandra S. Sheremet, Roman S. Savelev, and Mihail I. Petrov, "Strongly subradiant states in planar atomic arrays," Nanophotonics, Vol. 13, No. 3, 289-298, 2024.

36. Volkov, Ilya, Stanislav Mitsai, Stepan Zhogolev, Danil Kornovan, Alexandra Sheremet, Roman Savelev, and Mihail Petrov, "Non-radiative configurations of a few quantum emitters ensembles: Evolutionary optimization approach," Applied Physics Letters, Vol. 124, No. 8, 084001, 2024.

37. Rui, Jun, David Wei, Antonio Rubio-Abadal, Simon Hollerith, Johannes Zeiher, Dan M. Stamper-Kurn, Christian Gross, and Immanuel Bloch, "A subradiant optical mirror formed by a single structured atomic layer," Nature, Vol. 583, No. 7816, 369-374, 2020.
doi:10.1038/s41586-020-2463-x

38. Natarov, Denys M., Volodymyr O. Byelobrov, Ronan Sauleau, Trevor M. Benson, and Alexander I. Nosich, "Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires," Optics Express, Vol. 19, No. 22, 22176-22190, 2011.

39. Natarov, Denys M., Ronan Sauleau, Marian Marciniak, and Alexander I. Nosich, "Effect of periodicity in the resonant scattering of light by finite sparse configurations of many silver nanowires," Plasmonics, Vol. 9, 389-407, 2014.

40. Shapoval, Olga V. and Alexander I. Nosich, "Finite gratings of many thin silver nanostrips: Optical resonances and role of periodicity," AIP Advances, Vol. 3, No. 4, 042120, 2013.

41. Wei, Q.-H., K.-H. Su, S. Durant, and X. Zhang, "Plasmon resonance of finite one-dimensional Au nanoparticle chains," Nano Letters, Vol. 4, No. 6, 1067-1071, 2004.

42. Linton, Chris M. and Paul A. Martin, "Semi-infinite arrays of isotropic point scatterers. A unified approach," SIAM Journal on Applied Mathematics, Vol. 64, No. 3, 1035-1056, 2004.

43. Citrin, D. S., "Plasmon polaritons in finite-length metal-nanoparticle chains: The role of chain length unravelled," Nano Letters, Vol. 5, No. 5, 985-989, 2005.

44. Hadad, Y. and Ben Z. Steinberg, "Green's function theory for infinite and semi-infinite particle chains," Physical Review B, Vol. 84, No. 12, 125402, 2011.

45. Savelev, Roman S., Dmitry S. Filonov, Mihail I. Petrov, Alexander E. Krasnok, Pavel A. Belov, and Yuri S. Kivshar, "Resonant transmission of light in chains of high-index dielectric particles," Physical Review B, Vol. 92, No. 15, 155415, 2015.

46. Kornovan, Danil F., Roman S. Savelev, Yuri Kivshar, and Mihail I. Petrov, "High-Q localized states in finite arrays of subwavelength resonators," ACS Photonics, Vol. 8, No. 12, 3627-3632, 2021.

47. Michaeli, Lior, Ofer Doron, Yakir Hadad, Haim Suchowski, and Tal Ellenbogen, "Rayleigh anomaly induced phase gradients in finite nanoparticle chains," Nanoscale, Vol. 15, No. 33, 13653-13665, 2023.

48. Hulst, Hendrik Christoffel and Hendrik C. van de Hulst, Light Scattering by Small Particles, Courier Corporation, 1981.

49. Markel, Vadim A., "Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres," Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 38, No. 7, L115, 2005.

50. Fan, Shanhui, Wonjoo Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," Journal of the Optical Society of America A, Vol. 20, No. 3, 569-572, 2003.

51. Wang, Ken Xingze, Zongfu Yu, Sunil Sandhu, and Shanhui Fan, "Fundamental bounds on decay rates in asymmetric single-mode optical resonators," Optics Letters, Vol. 38, No. 2, 100-102, 2013.

52. Blanchard, Cédric, Jean-Paul Hugonin, and Christophe Sauvan, "Fano resonances in photonic crystal slabs near optical bound states in the continuum," Physical Review B, Vol. 94, No. 15, 155303, 2016.

53. Gustafsson, Mats, Iman Vakili, Sena Esen Bayer Keskin, Daniel Sjoberg, and Christer Larsson, "Optical theorem and forward scattering sum rule for periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3818-3826, 2012.

54. Berg, M. J., C. M. Sorensen, and A. Chakrabarti, "A new explanation of the extinction paradox," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 112, No. 7, 1170-1181, 2011.

55. Miroshnichenko, Andrey E., Andrey B. Evlyukhin, Ye Feng Yu, Reuben M. Bakker, Arkadi Chipouline, Arseniy I. Kuznetsov, Boris Luk'yanchuk, Boris N. Chichkov, and Yuri S. Kivshar, "Nonradiating anapole modes in dielectric nanoparticles," Nature Communications, Vol. 6, No. 1, 8069, 2015.

56. Kerker, M., D.-S. Wang, and C. L. Giles, "Electromagnetic scattering by magnetic spheres," Journal of the Optical Society of America, Vol. 73, No. 6, 765-767, 1983.

57. Markel, Vadim A., "Antisymmetrical optical states," Journal of the Optical Society of America B, Vol. 12, No. 10, 1783-1791, 1995.

58. Tretyakov, Sergei, "Maximizing absorption and scattering by dipole particles," Plasmonics, Vol. 9, No. 4, 935-944, 2014.

59. Fleury, Romain, Jason Soric, and Andrea Alù, "Physical bounds on absorption and scattering for cloaked sensors," Physical Review B, Vol. 89, No. 4, 045122, Jan. 2014.

60. Yariv, A., "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photonics Technology Letters, Vol. 14, No. 4, 483-485, 2002.

61. Mohammadi Estakhri, Nasim and Andrea Alù, "Minimum-scattering superabsorbers," Physical Review B, Vol. 89, No. 12, 121416, Mar. 2014.

62. Auguié, Baptiste, Xesús M. Bendaña, William L. Barnes, and F. Javier García de Abajo, "Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate," Physical Review B, Vol. 82, No. 15, 155447, 2010.