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ABSTRACT: Periodic optical structures, such as diffraction gratings and numerous photonic crystals, are one of the staples of modern
nanophotonics for the manipulation of electromagnetic radiation. The array of subwavelength dielectric rods is one of the simplest
platforms, which, despite its simplicity exhibits extraordinary wave phenomena, such as diffraction anomalies and narrow reflective
resonances. Despite the well-documented properties of infinite periodic systems, the behavior of these diffractive effects in systems
incorporating a finite number of elements is studied to a far lesser extent. Here we theoretically and numerically study the evolution
of collective spectral features in finite arrays of dielectric rods. We develop an analytical model of light scattering by a finite array of
circular rods based on the coupled dipoles approximation and analyze the spectral features of finite arrays within the developed model.
Finally, we validate the results of the analytical model using full-wave numerical simulations.

1. INTRODUCTION

Periodic optical structures, such as diffraction grating, var-
ious photonic crystals, wire metamaterials, offer a wide

range of optical phenomena, such as optical band gaps, hyper-
bolic dispersion, negative refraction, subwavelength imaging,
and others [1–5]. This diversity of possible optical behaviors,
studied since the pioneeringworks ofWood andRayleigh [6, 7],
makes periodic optical structures one of the staples of mod-
ern nanophotonics for advanced light manipulation [8, 9]. Ul-
timately, the resonances of such arrays enable optical bound
states in the continuum (BIC) [10–12]. In real structures BICs
can be detected as resonant states with sufficiently high qual-
ity factors [13, 14]. The theoretical and experimental investiga-
tions of the BICs have opened up novel avenues in the study of
topologically protected states [15], creation of lasers [16] and
highly sensitive dielectric sensors [17].
Particularly, periodic arrays of dielectric rods present an ul-

timately simple optical system that, nevertheless, is capable of
exhibiting some extraordinary wave phenomena [18, 19]. Pre-
vious theoretical and experimental studies have shown remark-
able spectral features in arrays of thin dielectric rods, such
as ultra-narrow resonances and total transmission [18, 20–22].
These effects have been attributed to the far-field inter-particle
interactions in the system in the vicinity of so called diffraction,
or Rayleigh, anomalies [1]. Interestingly, total transmission in
an array of thin rods occurring exactly at the Rayleigh anomaly
remains even in the presence of material losses in the dielectric
rods. Although these and related effects have been widely stud-
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ied and verified experimentally [23] in periodic structures, one
can wonder how these diffractive effects emerge in finite sys-
tems incorporating only a finite number of scattering elements.
Besides infinite truly periodic arrays, optical properties of fi-

nite arrays have also been studied to some extent. Evlyukhin et
al. studied the response of finite two-dimensional arrays of res-
onant dielectric and metallic particles [24, 25]. Several groups
have studied the size effect on the response of finite 2D ar-
rays [26–29] and showed that the optical properties of a finite
array gradually approach that of the infinite one. Some also
studied the effect of size and disorder on resonances of plas-
monic 2D arrays in the context of lasing modes [30–32]. More
recent research efforts explored the size-effect in 2D arrays
of resonant dielectric particles in the context of the collective
Kerker effect [33] and the formation of high-Q quasi-BIC states
in finite-size metasurfaces [34] and atomic arrays [35, 36].
These theoretical results have also been accompanied by an im-
pressive experimental progress in realization of reflective finite
atomic arrays [37].
Several works have also analyzed the size-effects in 1D ar-

rays of thin wires [38, 39] and nanostrips [40] with emphasis
on the behavior of the resonances. Others analyzed the spectral
properties of finite and semi-infinite chains of subwavelength
particles [41–44], as well as the transmission properties of in fi-
nite chains of subwavelength dielectric resonators [45], and the
formation of high-Q resonances in such chains [46]. However,
very little work has been accomplished to analyze the effect of
the array size on the Rayleigh anomalies, occurring at the onset
of new diffraction orders, with only some theoretical efforts de-
voted to studies of excitation of a finite one-dimensional chain
at the Rayleigh anomaly [47].
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FIGURE 1. (a) Exact analytical solution for scattering cross-section spectra of an individual dielectric circular cylinder with permittivity ε = 4
and r = 125 nm under TM-polarized illumination. (b) Monopole ℓ = 0 TM harmonic contribution to the total extinction cross-section under
TM-polarized illumination at the wavelength λ = 500 nm as the function of particle radius r.

In this paper, we theoretically investigate the evolution of
collective spectral features in finite arrays of dielectric rods
supporting both narrow optical resonances, as well as Rayleigh
anomalies. Based on the existing coupled dipoles approxima-
tion (CDA) model, we analytically solve the problem of light
scattering by a finite array of circular rods. Using this model,
we examine the effect of the number of the elements of a finite
array and the material absorption on the extinction spectra of
the array. Using the very same analytical model, we study the
eigenfrequencies distribution as a function of the number of the
elements. Next, we verify the results of the CDA-based analyt-
ical model by performing numerical simulations of the finite
system. Finally, we examine the effect of the rod cross-section
and the presence of a substrate on these phenomena.
The rest of the paper is organized as follows. in Section 2,

we present the optical properties (cross-section and polarizabil-
ities) of an individual dielectric rod. In Section 3, we present the
theory of light scattering by an infinite periodic array from [20]
and reproduce the key spectral features of the system under TM
illumination (electric field along the cylinder axis). In Sec-
tion 4, we study mentioned spectral features in a finite array
of both dielectric and metallic rods and study the effect of the
material absorption on these spectral features. In Section 5, we
compare the results of the theoretical model with the results of
numerical simulations, and in Section 6, we analyze the effect
of the rod cross-section and the presence of a substrate on the
diffractive optical features of infinite arrays.

2. INDIVIDUAL ROD
We begin with a brief analysis of plane wave scattering by a
single dielectric rod. Fig. 1(a) shows scattering cross-section
of a single dielectric rod (refractive index n =

√
ε ) in air illu-

minatedwith a normally-incident TM-polarized (magnetic field
perpendicular to the axis) plane wave, as well as the partial mul-
tipole contributions of different cylindrical harmonics to the to-
tal cross-section.
For small size parameters nk0r ≪ 1 the cross-section

is clearly dominated by the TM0 monopole harmonic [see
Fig. 1(b)]. In 3D space the zero order harmonic TM0 produces

the field of an infinitely extended electric dipole. This moti-
vates further analysis of the optical response of a cylinder in
dipole approximation and an introduction of the polarizability
tensor of a single subwavelength cylinder in the following form

↔
α = diag(αxx, αyy, αzz) (1)

with αxx = αzz = i 8
k2
0
a1, and αyy = i 4

k2
0
b0. The dimen-

sionless scattering coefficients a1 and b0 can be found
in [48, p. 301]:

b0 =

√
εJ ′

0(
√
εk0r)J0(k0r)− J0(

√
εk0r)J

′
0(k0r)√

εJ ′
0(
√
εk0r)H

(1)
0 (k0r)− J0(

√
εk0r)H

(1)′

0 (k0r)
,

a1 =
J ′
1(
√
εk0r)J1(k0r)−

√
εJ1(

√
εk0r)J

′
1(k0r)

J ′
1(
√
εk0r)H

(1)
1 (k0r)−

√
εJ1(

√
εk0r)H

(1)′

1 (k0r)
,

(2)

where Jℓ and H
(1)
ℓ are the Bessel and Hankel functions of the

first kind of ℓth order, respectively, and k0 = ω/c is the vacuum
wavenumber.

3. INFINITE ARRAY
Next we analyze the spectral features of an infinite array.
Fig. 1(a) illustrates the system under study. We consider a sys-
tem ofN parallel infinitely long circular dielectric cylinders in
air with permittivity ε, radius r, and distance L between the
centers of two neighboring rods. Let the array be illuminated
with a linearly TM-polarized (electric field along the cylinders
axes) plane wave:

Einc(r) = E ŷeikzz+ik∥x (3)

with k2z + k2∥ = k2, k = ω/c.
The total field is the sum of the background field and that

radiated by the cylinders:

Etot(r) = Einc(r) + 4πk20
∑
j

↔
G(r, rj)Pj , (4)

where Pj is the dipole moment of the jth scatterer defined by
self-consistent exciting field, and

↔
G is the free space dyadic
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Green’s function of the 2D Helmholtz equation:

↔
G(r, r′) =

(
I3×3 +

1

k20
∇⊗∇

)
i

4
H

(1)
0 (k0|r− r′|) , (5)

where I3×3 = diag(1, 1, 1) is the 3× 3 identity matrix. The re-
sultingGreen’s dyad is written in a compact form containing the
in-plane as well as out of plane responses simultaneously. For
TM polarization, analyzed in the following, the scalar Green’s
function of Helmholtz equation in 2D is:

G(r, r′) = i

4
H

(1)
0 (k0|r− r′|). (6)

For incident TM polarization, electric dipole induced in jth
cylinder is related to the total field via the yy-component of the
bare polarizability tensor, Eq. (1):

Pj ≡ P(rj) = αyyEtot(rj). (7)

The total field acting on the jth cylinder takes the form:

Etot(rj) = Einc(rj) + 4πk20Glatt(k∥)Pj , (8)

where the lattice sum Glatt accounts for the action of all other
cylinders i ̸= j in the array [20]:

Glatt(ω, k∥) = i

(
1

2Lkz
− 1

4

)

+
1

2L

∞∑
m=1

(
i

k
(m)
z

+
i

k
(−m)
z

− L

mπ

)

+
1

2π

(
ln

k0L

4π
+ γE

)
, (9)

where

k(m)
z =

√
k20 − q2m, qm = k∥ +

2πm

L
, (10)

are evaluated with radiation condition (Imk
(m)
z > 0), and γE

is the Euler’s constant.
With this at hand, we can express the induced dipole mo-

ments as:
Pj = α̃(ω, k∥)Einc(rj), (11)

where

α̃(ω, k∥) =
1

α−1
yy − 4πk20Glatt

(12)

is the renormalized (dressed) polarizability of the individual
cylinder.
To calculate the total scattered field and present it as a

Rayleigh series, we expand the Green’s function over two-sided
plane waves using Bessel identity:

H
(1)
0 (kr) =

1

π

∫ +∞

−∞
eikxx+ikz|z| dkx

kz
. (13)

The scattered field then takes the form of a set of diffraction
orders:

Escat = E ŷ i

2L

∑
m

α̃

k
(m)
z

eiqmx+ik(m)
z |z|. (14)

The orders withRek(m)
z > 0, Imk

(m)
z = 0 are the propagating

ones, whiles the orders with Rek(m)
z = 0, Imk

(m)
z > 0 are the

evanescent ones, and do not contribute to the energy transfer
away from the system. Finally, we obtain intensity reflection
and transmission coefficients:

R =
1

4L2

m>∑
m<

∣∣4πk20α̃∣∣2
k
(m)
z k

(0)
z

, (15)

T = 1− 4πImα̃

Lk
(0)
z

+
1

4L2

m>∑
m<

∣∣4πk20α̃∣∣2
k
(m)
z k

(0)
z

, (16)

where

m< = −
⌊
ω/c+ k∥

2π/L

⌋
, m> =

⌊
ω/c− k∥

2π/L

⌋
(17)

define the range of open (propagating) diffraction orders, and
⌊...⌋ denotes the floor operation. The first separate term in
Eq. (16) describes the interference between the non-resonantly
transmitted background field of the plane wave, and the field is
radiated by the cylinders.
Since in a typical experimental setting higher-order

diffracted signal is often not accessible with low-NA collec-
tion objectives, we will analyze pure specular zeroth-order
reflection coefficientR0:

R0 =

∣∣4πk20α̃∣∣2
4k

(0)
z

2L2
. (18)

Figure 2(b) presents specular intensity reflection spectra of
an infinite array at normal incidence. The spectra clearly dis-
play two key features of the dielectric rods array. First, the array
becomes transparent at the Rayleigh anomaly [18] defined by:

2π

L
|m| = ω

c
, m ∈ Z, (19)

corresponding to the opening of a new diffraction channel prop-
agating along the array with k

(m)
z = 0 separating two qualita-

tively different cases labeled with numbers 1 and 2 at the right
hand side of Fig. 2(a), which can be visualized with Ewald’s
sphere. The array becomes fully transparent at this point due to
the divergence of the lattice sum [49]:

Glatt → ∞, R → 0. (20)

Oblique incidence lifts the degeneracy between ±1 diffraction
orders and is expected to show qualitatively similar results at
frequencies satisfying the following condition:∣∣∣∣k∥ + 2π

L
m

∣∣∣∣ = ω

c
, m ∈ Z. (21)
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FIGURE 2. (a) Geometry of the system: an array ofN parallel infinitely long circular cylinders with permittivity ε, radius r, and distance L between
the centers of adjacent rods. (b) SpecularR0 (dashed) and totalR (solid) reflection spectra of an infinite periodic array of dielectric cylinders (ε = 4,
r = 0.1L) under TM-polarized illumination at angle θ = 0. The index inside the square denotes opened diffraction channels numbers. (c) Real part
of the inverse dipole polarizability of a single cylinder, and that of the lattice sum as the function of frequency. Intersection of the curves corresponds
to the total reflection conditionR = 1.

In the following we limit our analysis to normal incidence.
Interestingly, the same structure would not show perfect

transparency at the Rayleigh anomaly for TE incident polariza-
tion [18]. In this case, the response of each individual cylinder
is quantified by two Cartesian components of the electric dipole
moment Px and Pz , and only one of them vanishes at the lattice
singularity, while the other remains non-trivial and gives rise to
non-zero scattered field, interfering with the background plane
wave and in the end producing non-perfect transmission. For
this reason, in the following we focus on TM polarization only.
Another interesting feature is observed at frequencies

slightly below the first lattice singularity, where the array
becomes fully reflective,R = R0 = 1. These reflection peaks
are a manifestation of the underlying quasi-normal modes
of the array [19], which are solutions of the characteristic
equation:

α̃−1(ω, k∥) = 0. (22)
For a fixed wave vector component k∥ the solution of the char-
acteristic equation defines a complex frequency at which the
denominator of Eq. (12) vanishes [see Fig. 2(c)]. As a result,
the above characteristic equation allows non-zero dipole mo-
ments in the infinite periodic array in the absence of incident
field.
It is noteworthy that the specular reflection at the lattice res-

onance reaches exactly one [18]. This behavior can be well
understood on the basis of the temporal coupled-mode the-
ory [50, 51]. Indeed, below the onset of diffraction, the struc-
ture can bemodeled as a single-mode cavity coupled radiatively
to two scattering channels represented by oppositely propagat-
ing linearly-polarized plane waves. Due to the horizontal plane
of mirror symmetry of the array, the underlying resonant mode

has a certain parity and has coupled to the two channels with
symmetric radiative decay rates. Correspondingly, the non-
resonant background can be assumed to be nearly transparent,
rC ≈ 0, consistent with transparency of the array away from
its resonant frequency (but still away from diffraction). For
such an arrangement, one can show analytically that the sys-
tem becomes fully reflective at its resonance. Non-zero reflec-
tive background, rC ̸= 0, shifts the spectral position of the
reflection maximum, but it still reaches exactly 1 at the Fano
resonance of the system [50, 52].

4. FINITE-SIZE ARRAY
Nowwemove to to a system containing a finite number of rods.
Consider an array ofN scatterers described by point sources lo-
cated at r1, r2, ..., rN . Here, we utilize the original Foldy-Lax
formulation of scattering problem in the coupled dipole approx-
imation similar to Eq. (8):

Etot(r) = Einc(r) + 4πk20

N∑
j=1

G(r, rj)P(rj), (23)

where Pj ≡ P(rj) = αyyEtot(rj) is the dipole moment of the
jth scatterer defined self-consistently by the exciting field, and
G is the free space Green’s function introduced earlier, Eq. (6).
Once again, we will assume that the plane of incidence is per-
pendicular to the rods, i.e., r = (x, z)T [see Fig. 2(a)]. As it
follows from the relations (3), (7) and (11), for TM polariza-
tion only the y-component of dipole moments and electric field
is required for further evaluations, so next we will operate with
scalar quantities. Multiplying Eq. (23) by individual cylinder’s
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FIGURE 3. (a)–(d) Extinction efficiency spectra of finite periodic arrays of circular dielectric rods (ε = 4, r = 0.1L) for different number of rods
N = 3, 10, 30, 100 under normally incident TM-polarized illumination. Orange dots mark the position of the lattice resonance, while the red dots
mark the position of the Rayleigh frequency of the infinitely extended (N = ∞) structure. (e) Extinction cross-section (dashed) and extinction
efficiency (solid) of a finite array of dielectric rods as functions of N evaluated with the CDA model at the lattice resonance. (f) Same as (e) but
evaluated at the Rayleigh anomaly of the array.

polarizability αyy and substituting r = ri, we obtain a system
of coupled linear equations:

Pi = αyyEeikzzi+ik∥xi + 4πk20αyy

∑
j ̸=i

G(ri, rj)Pj , (24)

where Pi is the y-component of Pj . Rearranging the terms in
this system, we rewrite it in a compact matrix form:

↔
M(ω)P = Einc, (25)

where P and Einc denote the super-vectors of dipole moments
and incident fields:

P =


P1

...
PN

 , Einc =


Einc

y (r1)
...

Einc
y (rN )

 = E


eikzz1+ik∥x1

...
eikzzN+ik∥xN

 ,

(26)

and
↔
M is the coupling matrix:

↔
M(ω) = α−1

yy

↔
I − 4πk20 ×

0 G(r1, r2;ω) · · · G(r1, rN ;ω)

G(r2, r1;ω) 0 · · · G(r2, rN ;ω)

...
. . .

...
G(rN , r1;ω) G(rN , r2;ω) · · · 0

. (27)

Resolving Eq. (25) with respect to the dipole moments, we ob-
tain:

P =
↔
M

−1

(ω)Einc, (28)
which formally expresses the solution of the coupled dipoles
problem. In general, the coupling matrix is not guaranteed to
be invertible at every frequency ω. In particular, it might not
be invertible at a bound state in the continuum. That, however,
would require an infinite system N = ∞.
The dipole moment values obtained from Eq. (28) yield the

extinction cross-section of the finite system:

σext =
4πk0
|E|2

N∑
i=1

Im
[
P ∗
i E

inc(ri)
]
. (29)

Finally, we introduce the extinction efficiency defined as:

σ̃ext =
σext
NL

. (30)

Figures 3(a)–(d) show a series of extinction efficiency spec-
tra for finite arrays with different numbersN of subwavelength
dielectric cylinders illuminated with a normally incident TE-
polarized plane wave. While for a single cylinder, N = 1, the
extinction efficiency expectedly does not feature any resonant
effects, sharp peaks and dips associated with the lattice reso-
nances (orange dots) and Rayleigh anomalies (red dots) gradu-
ally appear for larger N . Extinction efficiency evaluated at the
lattice resonance frequency rapidly approaches 2 with growing
N , Fig. 3(e). Section S1 of Supplemental Material contains a
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(a) (b)

FIGURE 4. Spatial distribution of the normalized induced dipole moment absolute values |Pi| (a) and dipole moment arguments argPi (b) in finite
arrays of dielectric rods (ε = 4, r = 0.1L) obtained with the CDA model for N = 2, 10, 30, 100 at the frequency of Rayleigh anomaly of infinite
system. The color of each plot encodes the extinction efficiency of the system , see the color bar in the inset.

more detailed discussion of complex-valued resonant frequen-
cies of finite arrays and their evolution with N .
Conversely, at the first Rayleigh frequency, ωL/2πc = 1,

the absolute extinction still grows withN , but the extinction ef-
ficiency vanishes in the limit of infinite array, N → ∞. Thus,
at the Rayleigh anomaly the system becomes more transpar-
ent in terms of extinction efficiency with increasing number of
scattering elements. More precisely, the extinction efficiency
scales asymptotically as σ̃ext ∝ 1/

√
N [see Fig. 3(f)]. Such a

slow convergence to the value predicted for an infinite system
is caused by the lattice sum representing a conditionally con-
vergent series of Hankel functions.
It is known that per-unit-area extinction σ/A of a truly infi-

nite periodic metasurface can be expressed as [53]

σ/A = 2Re(1− t), (31)

where t is the complex-valued zero-order (specular) transmis-
sion amplitude of the periodic system.
Exactly at the Rayleigh anomaly t = 1 (see Fig. S3 for the

plot of complex-valued transmission amplitude t), thus yielding
σ/A = 0. This corresponds to the incident field performing no
net work on the induced currents whatsoever, consistent with
near-ideal transparency.
A more peculiar situation occurs at the lattice resonance fre-

quency. Plugging t = 0 in (31) one obtains σ/A = 2, which
is exactly the result we observe in the extinction efficiency of
large finite arrays at the lattice resonance, Fig. 3(e). This re-
minds the situation with the extinction paradox, wherein scat-
tering cross-section of a perfectly conducting sphere in the limit
of short wavelength is twice of its geometric cross-section [54].
To provide more insight into the total transmission effect at

the Rayleigh anomaly, we analyze the distribution of the in-
duced dipole moments along the finite array upon a monochro-
matic TM-polarized illumination at the Rayleigh frequency
ωL/2πc = 1. Fig. 4 shows the magnitude of the induced dipole
moments of the dielectric cylinders as a function of the cylin-
der index for a series of N values. Clearly, the magnitudes
drop in every section of the array with increasing total number

of elements N . Furthermore, one can clearly notice the edge
effect: for any given N the dipole moments magnitude grows
towards the edge, which is due to the uncompensated field from
the missing dipoles at the edge of the array [Fig. 4(a)].
In addition, at the Rayleigh anomaly dipole moments phases

possess the similar behavior — the argument of each dipole
moment with growing N tends to π thus minimizing Im[Pi].
Thus, infinitely large array N −→ ∞ becomes fully “trans-
parent”. However, the dipoles at the edges still provide a sig-
nificant contribution to extinction due to argP±N/2 −→ π/2,
making corresponding large dipole moment purely imaginary
[Fig. 4(b)]. Section S2 of Supporting Information offers more
analysis of the per-dipole extinction convergence.
In the limitN → ∞, the edge effect would disappear, and the

induced dipole moments get totally suppressed at the Rayleigh
anomaly leading to total transparency of the array. It is worth
noting that the presented mechanism of total transparency re-
lies on the inter-particle interaction within the array and differs
from the effects in individual particles, such as anapole [55] or
Kerker effect [56] based on the destructive interference of cer-
tain multipole moments in backward direction.

4.1. The Effect of Material Absorption
The previous analysis ignores possible absorption in dielectric
cylinders. It is instructive now to examine how the presence
of dissipation affects the results in light of the results on infi-
nite arrays, which predict the transparency of the periodic sys-
tem at the Rayleigh anomaly even in the presence of material
loss [1]. By introducing material loss, we have to distinguish
contributions from absorption and scattering to the extinction
cross-section. Absorption efficiency can be defined similarly
to extinction efficiency, Eq. (30), by replacing the background
field with the total one [57]:

σ̃abs =
4πk0

NL|E|2
N∑
i=1

Im
[
P ∗
i · Etot(ri)

]
. (32)
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(a) (b)

FIGURE 5. Extinction efficiency σ̃ext (a) and absorption efficiency σ̃abs (b) for finite periodic arrays (Re{ε} = 4, r = 0.1L) with fixed number of
rods under TM-polarized illumination at the Rayleigh frequency (ωL/2πc = 1) as a function of the imaginary part of the permittivity Im[ε] = ε′′.
Solid circles show extinction minima and dashed circles show the absorption maxima.

Figure 5 presents the resulting extinction σ̃ext and absorption
σ̃abs efficiencies as a function of the imaginary part of the cylin-
ders permittivity ε′′ at the Rayleigh wavelength for a series of
N . For each N the absorption efficiency reaches a maximum
at a certain value of ε′′, Fig. 5(b).
At the same time, the increase of ε′′ suppresses the extinc-

tion efficiency below the initial value until it reaches a min-
imum, and then starts to increase approaching an asymptotic
value, Fig. 5(a). The results in Fig. 5(a) are rather counter-
intuitive. An array of lossless cylinders becomes transparent at
the Rayleigh anomaly in the limit of infinite array, N → ∞
[see Fig. 2(c)]. A non-scattering optical system, such as an
anapole nanodisk or an array of those, starts to scatter more
with increasing material dissipation in agreement with the opti-
cal theorem [58, 59]. Nevertheless, increasing material absorp-
tion of the cylinders further suppresses extinction until the min-
imum value is reached.
The behavior shown in Fig. 5(b) is reminiscent of the crit-

ical coupling phenomenon [60]. Critical coupling describes
the behavior of a single-mode optical structure coupled radia-
tively at a rate γrad to a single scattering channel, and at the
same time experiencing a non-radiative decay at a rate γnon-rad.
Given balanced decay rates, γrad = γnon-rad, the system exhibits
ideal absorption upon illumination from that scattering chan-
nel. For a spherically (cylindrically) symmetric object criti-
cal coupling requires illumination with an appropriate vector
spherical (cylindrical) harmonic. A plane wave illumination
then manifests as maximized and equal partial absorption and
scattering cross-sections into that particular multipolar chan-
nel [58, 59, 61]. However, the fundamental lattice resonance
of our finite system of N ≫ 1 rods is coupled to a great num-
ber of multipolar scattering channels. This complicated struc-
ture of the lattice resonance hinders the observation of either
perfect absorption or equalized partial cross-sections. Never-
theless, the maxima of the total absorption cross-section ob-
served at specific values of Imε strongly suggest that the finite
system becomes critically coupled at that point, but requires a
complicated incoming wave front for the observation of critical
coupling.

It is worth mentioning that the absorptive performance of the
system is entirely due to the properties of the individual parti-
cles, since the matrix denominator in (12) contains factors con-
sisting of two terms groups. While the second group describing
array properties does not change with the material losses, the
first one, represented through the inverse polarizability, deter-
mines the absorbing properties.
The inverse polarizability of a 2D scatterer takes the follow-

ing form in quasi-static limit:

α−1
yy = ξ′ + iξ′′ +

i
4
k20, (33)

where ξ′ is the electrostatic term; ξ′′ represents absorption; and
the last term describes the radiation correction [58]. Utilizing
the Taylor series expansion of b0 (2) at k0r → 0, one can no-
tice that ξ′′ vanishes in the limit of both small and very large
material losses. As a result, in both limits the dominant con-
tribution to the extinction efficiency is provided by scattering
cross-section. Indeed, σabs ∝ ε′′ in the limit ε′′ ≪ 1, and
σabs ∝ 1/

√
ε′′ in the limit ε′′ ≫ 1, according to results shown

in Fig. 5(b).

4.2. Finite-Size Metallic Arrays
To further demonstrate the universal nature of the collective
transparency at the Rayleigh anomaly, we also confirm its oc-
currence in a finite array of metallic circular rods described by
lossless Drude model, ε(ω) = 1− ω2

p/ω
2, where ωp is plasma

frequency. The CDA model developed above remains fully
valid as long as one adjusts the cylinders polarizability αyy ac-
counting for frequency-dependent Drude permittivity.
Figures 6(a)–(c) present reflection spectra of infinite periodic

arrays of metallic rods with different ratios L/λp encoding the
strength of metallic response. Clearly, the array of thin metal-
lic cylinders becomes perfectly reflective in the low-frequency
limit. Still, the lattice sum Glatt diverges exactly at the same
Rayleigh anomaly, rendering the array of metallic rods fully
transparent upon TM-polarized illumination at each Rayleigh
anomaly, Figs. 6(a)–(c).
In finite arrays of metallic cylinders with relatively small

plasma frequency, L/λp < 1, the drop of normalized extinc-

69 www.jpier.org



Karavaev et al.

(a) (b) (c)

(d) (e) (f)

FIGURE 6. (a)–(c) Specular reflection spectra of infinite periodic arrays of circular Drude rods (r = 0.1L) for different plasma wavelengths under
normally incident TM-polarized illumination. Grey dashed linesmark the Rayleigh anomaly frequencies. ε indicate the value of the rod’s permittivity
at the first Rayleigh anomaly, ωL/2πc = 1. (d)–(f) Extinction cross-section (orange) and extinction efficiency (red) of a finite array of Drude rods
as functions of on N obtained with the CDA model at the first Rayleigh anomaly frequency ωL/2πc = 1 for different plasma wavelengths
λp/L = 2, 1, 1/3, respectively.

tion does not occur until a large number of scatterers N is in-
volved, Fig. 6(d). In arrays of cylinders with more pronounced
metallic properties, L/λp ≥ 1; on the other hand, the drop of
normalized extinction occurs at much smaller number of cylin-
ders, Figs. 6(e) and (f).

5. NUMERICAL SIMULATIONS: CIRCULAR CROSS-
SECTION
Next, we verify the validity of the CDA model used above. To
that end we perform a series of full-wave numerical simulations
for N = 30 cylinders of different sizes in COMSOL Multi-
physics. To that end, we calculate the scattering cross-section
by integrating the energy flux over the boundary ∂V between
the Perfectly Matched Layers and cylinders as

σsct =
1

2I inc

∮
∂V

Re
[
Esct × (Hsct)∗

]
· ndS, (34)

where I inc is the energy flux of the incident field. The absorp-
tion cross-section was obtained by the integration over scatter-
ers domain V by the following expression:

σabs =
1

2I inc

∫
V

Re
[
j · (Etot)∗

]
dV, (35)

where j is the total current density induced by total field Etot.
Finally, extinction cross-section was determined as the sum of
the absorption and scattering cross-sections, σext = σsct + σabs.

For small cylinders (r = 0.1L), the resulting extinction ef-
ficiency spectra show a great agreement (with an accuracy of

10−2) up to the first Rayleigh anomaly, ωL ≤ 2πc, Fig. 7(a).
At the higher frequencies, the results predicted by the mod-
els begin to diverge. This discrepancy originates from the
contributions of higher order multipole moments to the scat-
tered field, which become particularly significant above the
first Rayleigh anomaly. The magnitude of each contribution
is proportional to the corresponding scattering coefficient al or
bl, l = 0, 1, 2, . . . , which is in turn a function of dimensionless
size parameter

√
εk0r.

For thicker cylinders (r = 0.25L), the discrepancy between
the CDA and numerical simulations appears even below the
Rayleigh anomaly in the sub-diffraction regime, Fig. 7(d). The
total transparency effect is no longer observed at the Rayleigh
frequency or in its vicinity according to the results of numerical
simulations (the orange curve in Fig. 7(d)). Instead, the array of
thick cylinders in fact becomes nearly transparent at the point of
a Fano resonance below the first diffraction threshold, Fig. S4.
This is accompanied by the extinction efficiency approaching
4 at the resonance, Fig. 7(d).
Next, Figs. 7(b), (c), (e), and (f) illustrate the cross-sectional

view of the total and scattered parts of the electric field at the
Rayleigh anomaly in the vertical plane evaluated with the CDA
model and the numerical simulations forN = 30 arrays of thin
and thick circular cylinders. For thin cylinders (r = 0.1L), the
CDA and numerical models show great agreement in evaluation
of the total and scattered field. For thick cylinders (r = 0.25L),
however, predictions of the CDA model clearly become incor-
rect at the Rayleigh anomaly. While the CDA model predicts
the absence of radiated field and unperturbed transmission of
the incident wave, which is clearly not the case in full-wave
numerical simulations.
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(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 7. (a) Comparison of the extinction efficiency σ̃ext spectra obtained via the CDA model (red solid line) and via COMSOL Multyphysics
numerical simulation (orange solid line) for a finite array of N = 30 circular cylinders (ε = 4, r = 0.1L). Dashed gray curve shows the relative
error (log scale). (b) Cross-section view of the magnitude of the scattered electric field (log scale) and (c) real part of the total electric field in the
plane orthogonal to the cylinders axis forN = 30, obtained with the CDA model (left part of the panel) and by COMSOL Multyphysics numerical
simulations (right part of the panel) at the Rayleigh frequency. Black circles represent the scatterers sizes and positions. (d) – (f) Same as (a) – (c),
respectively, but for thicker circular cylinders with r = 0.25L.

(a) (b)

FIGURE 8. (a) Extinction efficiency obtained from analytics (solid) and numerical simulations (dashed) as functions of N for finite arrays of N
dielectric cylinders (ε = 4, r = 0.1L) at the lattice resonance (orange) and at the Rayleigh anomaly (red). (b) same as (a) for thicker rods,
r = 0.25L.

Figure 8 compares the behavior of the extinction efficien-
cies vs N obtained with the CDA model (Figs. 3(e) and (f))
to those obtained with numerical simulations for the two cases
of interest (at the Rayleigh anomaly and at the resonance). In
both scenarios, the relative error of the CDA model with re-
spect to more exact numerical simulations stays on the level of

a few percent, which suggests that we can keep using the CDA
model for the evaluation of extinction efficiencies of the system
for relatively thin dielectric cylinders, r ≤ 0.1L. For thick cir-
cular rods, r = 0.25L, the relative error becomes much larger,
clearly indicating that the CDA model is no longer valid.
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(a) (b)

FIGURE 9. (a) Numerically simulated specular reflection R0 spectra for infinite arrays of dielectric rods with circular and square cross-sections.
Both arrays exhibit perfect transmission at the Rayleigh anomaly. (b) Extinction efficiency of a finite array of square rods evaluated at the Rayleigh
anomaly as a function of N .

(a) (b)

(c) (d)

FIGURE 10. Numerical simulations: the effect of dielectric nsub = 1.45 substrate for (a), (b) and nsub = 2 substrate for (c), (d). As follows from
the spectra in panels (a) and (c), the presence of a substrate violates the perfect transmission at Rayleigh anomalies of the arrays. (b) and (d) show
normalized total field as function of the coordinates.

6. NUMERICAL SIMULATIONS: NON-CIRCULAR
CROSS-SECTION AND THE EFFECT OF SUBSTRATE
Next, we move on to the analysis of analogous effects in realis-
tic systems incorporating dielectric rods of square cross-section
and possibly a dielectric substrate. To begin with, we analyze
an infinite array of square rods and highlight the key differ-
ences from the case of circular cylinders. As one can see from
Fig. 9(a), below the onset of diffraction, ωL/2πc < 1, a peri-
odic array of square (cross-section) rods features the intensity
reflection similar to that of circular cylinders.
As long as the CDA model is valid, the analytical expres-

sions for the response of the periodic array (Eqs. (15) and (16))
remain applicable to the arrays of square/rectangular rods with
an appropriate bare polarizability αyy in the denominator of
Eq. (12) (which can be calculated numerically with a desired
precision). The termGlatt corresponding to the effect of the lat-
tice remains unchanged. Thus, the total transmission effect re-
mains observed at the Rayleigh anomaly of the infinite periodic
array at ωL/2πc = 1. However, at higher frequencies, there
are notable differences in the reflection spectra of circular and
square rods. Those could be caused by the excitation of higher
multipole moments in the array of square rods, which lead to a

destructive interference and cause a substantially lower specu-
lar reflection of arrays of square rods, Fig. 9(a). As a result of
the analytical equivalence mentioned above, the extinction ef-
ficiency of a finite array of square rods at the Rayleigh anomaly
retains the same asymptotic behavior as a function of the num-
ber of the elements in the array N , Fig. 9(b).
Finally, we analyze how the presence of a dielectric sub-

strate would affect the spectral features— in particular, the total
transparency at the Rayleigh anomaly — of an infinite periodic
array. Fig. 10(a) shows simulated intensity reflection spectrum
of an array of square cross-section dielectric rods, with refrac-
tive index n = 2 and height d = 0.2L, lying on top of a quartz
substrate, nsub = 1.45 [see the geometry sketch in Fig. 10(b)].
As one can see, both the effects of total reflection at the lattice
resonance and the total transmission at the Rayleigh anomaly
ωL = 2πc are gone with the dielectric substrate present. These
changes are mainly caused by the strong near-field interactions
of the rods with the substrate, which, due to the vanishingly
small distance between the dielectrics, turn out to be the most
significant. For this particular configuration the reflection co-
efficient is rather small, but still a non-zero value around 0.05
at the Raleigh anomaly, Fig. 10(a). Correspondingly, this non-
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zero reflection causes noticeable distortion of the total field cal-
culated right at the Raleigh anomaly.
Another remarkable spectral feature is the occurrence of a

sharp reflection peak at ωL/2πc ≈ 1.4. Counter-intuitively,
this peak is not a resonant feature of the system, but instead
is related to the onset of the m = ±2 diffraction order in the
dielectric substrate, which is justified by noticing that corre-
sponding Rayleigh anomaly for dielectric with nsub = 1.45 is
exactly at stated frequency. In contrast to the Rayleigh anomaly
in free-standing arrays, this Rayleigh anomaly does not mani-
fest itself as a reflection zero or a reflection dip [62].
A qualitatively similar picture is observed in the case of iden-

tical material of the scatterers and the substrate withnsub = n =
2 [see Fig. 10(d)]. Since the substrate index is an integer multi-
ple of the superstrate index, each even Rayleigh anomaly in the
substrate matches a Rayleigh anomaly in air, Fig. 10(c). Sim-
ilar to the previous case of a glass substrate, the total field at
the Rayleigh anomaly is substantially distorted away from the
background field, Fig. 10(d).
Including substrate in an experimental scenario would thus

complicate, if not make impossible, the potential observation
of perfect transparency at the Rayleigh anomaly. However,
similar arrays have been fabricated using free-standing dielec-
tric membranes in air [23]. This approach could allow experi-
mental observation of the diffraction effects in finite arrays in
a substrate-free configuration.

7. CONCLUSION
To conclude, we have theoretically and numerically studied the
evolution of diffractive spectral features in finite arrays of sub-
wavelength circular dielectric rods. The results of the coupled
dipoles approximation-based analytical model indicate that fi-
nite arrays do become transparent at the Rayleigh anomaly in
terms of the normalized extinction. This transition to trans-
parency is accompanied by a gradual suppression of the induced
dipole moments of the rods along the chain as the number of
elements of the finite system increases. Furthermore, the pres-
ence of material absorption barely affects the transparency of
finite arrays at the diffraction anomaly. Full-wave numerical
simulations validate the results of the analytical model in the
limit of subwavelength rods and suggest that these phenomena
survive for non-circular cross-section of the rods. Finally, we
show that the presence of a dielectric substrate will possibly
destroy the effects of perfect transmission and the lattice reso-
nance and finite and infinite arrays of subwavelength rods. Our
results could provide more insights into the diffractive effects
in finite periodic systems.
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