Vol. 11
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-09-20
Multi-Harmonic DC-Bias Network Based on Arbitrarily Width Modulated Microstrip Line
By
Progress In Electromagnetics Research Letters, Vol. 11, 119-128, 2009
Abstract
In this work, we present a novel DC-bias network for multiharmonic microwave circuits based on an arbitrarily width-modulated microstrip line. The arbitrary shape of the width-modulated microstrip line is obtained by using multiple microstrip taper sections. The method is illustrated through the design of four different DC-bias networks blocking from 1 to 4 harmonic components of a 2.5 GHz signal. The designs with an optimum shape for the arbitrarily widthmodulated microstrip line have been manufactured and measured, obtaining a good agreement between the simulated and measured behavior.
Citation
Samuel Ver-Hoeye, Carlos Vazquez-Antuna, Marta Gonzalez Corredoiras, Miguel Fernandez-Garcia, Luis Herran Ontanon, and Fernando Las Heras Andres, "Multi-Harmonic DC-Bias Network Based on Arbitrarily Width Modulated Microstrip Line," Progress In Electromagnetics Research Letters, Vol. 11, 119-128, 2009.
doi:10.2528/PIERL09071605
References

1. Vazquez, C., S. Ver Hoeye, G. Leon, M. Fernandez, L. F. Herran, and F. Las Heras, "Transmitting polarization agile microstrip antenna based on injection locked oscillators," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2427-2437, 2008.
doi:10.1163/156939308787543831

2. Ver Hoeye, S., C. Vazquez, M. Fernandez, L. F. Herran, and F. Las Heras, "Receiving phased antenna array based on injection-locked harmonic self-oscillating mixers," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, 645-651, 2009.
doi:10.1109/TAP.2009.2013439

3. Ver Hoeye, S., F. Ramirez, and A. Suarez, "Nonlinear optimization tools for the design of high-efficiency microwave oscillators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 5, 189-191, 2004.
doi:10.1109/LMWC.2004.827869

4. Herran, L. F., S. Ver Hoeye, and F. Las Heras, "Nonlinear optimization tools for the design of microwave high-conversion gain harmonic self-oscillating mixers," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 1, 16-18, 2006.
doi:10.1109/LMWC.2005.861357

5. Fernandez, M., S. Ver Hoeye, L. F. Herran, and F. Las Heras, "Nonlinear optimization of wide-band harmonic self-oscillating mixers," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 5, 347-349, 2008.

6. Fernandez, M., S. Ver Hoeye, L. F. Herran, and F. Las Heras, "Design of high-gain wide-band harmonic self-oscillating mixers," International Journal of Circuit Theory and Applications, 2009.

7. Ver Hoeye, S., L. F. Herran, M. Fernandez, and F. Las Heras, "Design and analysis of a microwave large-range variable phase-shifter based on an injection-locked harmonic self-oscillating mixer," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 6, 342-344, 2006.
doi:10.1109/LMWC.2006.875623

8. Ver Hoeye, S., M. Gonzalez, M. Fernandez, C. Vazquez, L. F. Herran, and F. Las Heras, "Harmonic optimization of rationally synchronized oscillators," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 317-319, 2009.
doi:10.1109/LMWC.2009.2017604

9. Giannini, F., C. Paoloni, and M. Ruggieri, "CAD-oriented lossy models for radial stubs," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 2, 305-313, 1988.
doi:10.1109/22.3519

10. Sorrentino, R. and L. Roselli, "A new simple and accurate formula for microstrip radial stub," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 12, 480-482, 1992.
doi:10.1109/75.173401

11. Shamsinejad, S., M. Soleimani, M. Tayarani, and N. Komjani, "Novel even harmonic mixer for 3G movile receivers," Progress In Electromagnetics Research M, Vol. 1, 69-77, 2008.
doi:10.2528/PIERM08012703

12. Liang, J. and H. Y. D. Yang, "Varactor loaded tunable printed PIFA," Progress In Electromagnetics Research B, Vol. 15, 113-131, 2009.
doi:10.2528/PIERB09041108

13. Nair, N. V. and A. K. Mallick, "An analysis of a width-modulated microstrip periodic structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 2, 200-204, 1984.
doi:10.1109/TMTT.1984.1132646

14. Lyons, W. G., R. S. Withers, J. M. Hamm, and A. C. Anderson, "High-Tc superconductive line structures and signal conditioning networks," IEEE Transactions on Magnetics, Vol. 27, No. 2, 2932-2935, 1991.
doi:10.1109/20.133823

15. Cheung, H. C. H., M. Holroyd, F. Huang, M. J. Lancaster, B. Aschermann, M. Getta, G. Mller, and H. Schlick, "125% bandwidth superconducting chirp filters," IEEE Transactions on Applied Superconductivity, Vol. 7, No. 2, 2359-2362, 1997.
doi:10.1109/77.621713

16. Laso, M. A. G., T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, "Chirped delay lines in microstrip technology," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 12, 486-488, 2001.
doi:10.1109/7260.974554

17. Rao, X. S., L. Chen, C. Y. Tan, J. Lu, and C. K. Ong, "Design of one-dimensional microstrip bandstop filters with continuous patterns based on fourier trasform," IEE Electronics Letters, Vol. 39, No. 1, 64-65, 2003.
doi:10.1049/el:20030082

18. Laso, M. A. G., T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, "Real-time spectrum analysis in microstrip technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 705-717, 2003.
doi:10.1109/TMTT.2003.808741

19. Schwartz, J. D., J. Azaa, and D. V. Plant, "A fully electronic system for the time magnification of ultra-wideband signals," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 2, 327-334, 2007.
doi:10.1109/TMTT.2006.890069

20. Schwartz, J. D., M. M. Guttman, J. Azaa, and D. V. Plant, "Multichannel filters using chirped bandgap structures in microstrip technology," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 8, 577-579, 2007.
doi:10.1109/LMWC.2007.901765