Vol. 11
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-09-20
Bazro3:Yb Nanophosphor for Efficient Up-Conversion Light Emission
By
Progress In Electromagnetics Research Letters, Vol. 11, 139-148, 2009
Abstract
Strong visible green upconversion emission in nanocrystalline BaZrO3:Yb3+ powder, obtained by a hydrothermal process at 100ºC, is reported. The unconverted emission has a quadratic dependence on the pump intensity with a lifetime around half that of the NIR lifetime. Results suggest cooperative upconversion as the mechanism responsible for the green fluorescence. This efficient Yb3+-based cooperative up-conversion process allows the development of novel emitting materials in the UV-VIS range.
Citation
Luis-Armando Diaz-Torres, Elder De-la-Rosa, Jorge Oliva, Pedro Salas, and Victor M. Castano, "Bazro3:Yb Nanophosphor for Efficient Up-Conversion Light Emission," Progress In Electromagnetics Research Letters, Vol. 11, 139-148, 2009.
doi:10.2528/PIERL09082403
References

1. Chatterjee, D. K., A. J. Rufaihah, and Y. Zhang, "Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals," Biomaterials, Vol. 29, 937-943, 2008.
doi:10.1016/j.biomaterials.2007.10.051

2. Chen, G. Y., Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, "Two-color upconversion in rare-earth-ion-doped ZrO2 nanocrystals," Appl. Phys. Lett., Vol. 89, 163105, 2006.
doi:10.1063/1.2363146

3. Filippov, V., Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, "Double clad tapered fiber for high power applications," Opt. Express, Vol. 16, No. 3, 1929, 2008.
doi:10.1364/OE.16.001929

4. Marchese, S. V., C. R. E. Baer, R. Peters, C. Krankel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Sudmeyer, G. Huber, and U. Seller, "Efficient femtosecond high power Yb : Lu2O3 thin disk laser," Opt. Express, Vol. 15, No. 25, 16966, 2007.
doi:10.1364/OE.15.016966

5. Gangwar, R., S. P. Singh, and N. Singh, "L-band superfluorescent fiber source," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2201-2204, 2007.
doi:10.1163/156939307783134362

6. De la Rosa, E., P. Salas, L. A. Diaz-Torres, A. Martinez, and C. Angeles, "Strong visible cooperative up-conversion emission in ZrO2: Yb3+Nanocrystals," JNN, Vol. 5, No. 1480, 2005.
doi:10.1163/156939307783134362

7. Qin, G. S., W. P. Qin, C. F. Wu, D. Zhao, J. S. Zhang, S. Z. Lu, S. H. Huang, and W. Xu, "Infrared-to-visible upconversion luminescence of Er3+ and Yb3+ co-doped germanate glass," J. Non-cryst Solids, Vol. 347, 52, 2004.
doi:10.1016/j.jnoncrysol.2004.08.268

8. Song, H. W., B. J. Sun, et al. "Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria," Solid State Commun., Vol. 132, 409, 2004.
doi:10.1016/j.ssc.2004.07.044

9. Balda, R., A. J. Garcia-Adeva, M. Voda, and J. Fernandez, "Upconversion processes in Er3+-doped KPb2 C15 ," Phys. Rev. B, Vol. 69, 205203, 2004.
doi:10.1103/PhysRevB.69.205203

10. Auzel, F., "Upconversion and anti-stokes processes with f and d ions in solids," Chem. Rev., Vol. 104, No. 139, 2004.

11. Suyver, J. F., A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, and H. U. Gudel, "Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion," Optical Materials, Vol. 27, 1111, 2005.
doi:10.1016/j.optmat.2004.10.021

12. Chen, G. Y., Y. Liu, Z. G. Zhang, B. Aghahadi, G. Somesfalean, Q. Sun, and F. P. Wang, "Four-photon upconversion induced by infrared diode laser excitation in rare-earth-ion-doped Y2O3 nanocrystals," Chemical Physics Letters, Vol. 448, 127, 2007.
doi:10.1016/j.cplett.2007.09.078

13. Sun, C. J., Z. Xu, B. Hu, G. S. Yi, G. M. Chow, and J. Shen, "Application of NaYF4: Yb, Er upconversion fluorescence nanocrystals for solution-processed near infrared photodetectors," Appl. Phys. Lett., Vol. 91, 191113, 2007.
doi:10.1063/1.2807841

15. Goodenough, J. B., "Electronic and ionic transport properties and other physical aspects of perovskites," Rep. Prog. Phys., Vol. 67, 1915, 2004.
doi:10.1088/0034-4885/67/11/R01

16. Patnaik, A. S. and A. V. Virka, "Transport properties of potassium-doped BaZrO3 in oxygen- and water-vapor-containing atmospheres," J. Electrochem. Soc., Vol. 153, No. 7, A1397, 2006.
doi:10.1149/1.2203095

17. Zeng, X., G. Zhao, and J. Xu, "Effects of Yb concentration on the fluorescence spectra of Yb-doped YAlO3 single crystals," Spectrochimica Acta. Part A, Vol. 65, 184, 2006.
doi:10.1016/j.saa.2005.10.026

18. Amami, J., D. Hreniak, Y. Guyot, R. Pazik, C. Goutaudier, G. Boulon, M. Ayadi, and W. Strek, "Second harmonic generation and Yb3+ cooperative emission used as structural probes in size-driven cubic-tetragonal phase transition in BaTiO3 sol-gel nanocrystals," J. Lumin, Vol. 383, 119-120, 2006.

19. Mattarelli, M., S. Sebastiani, J. Spirkova, S. Berneschi, M. Brenci, R. Calzolai, A. Chiasera, M. Ferrari, M. Montagna, G. Nunzi-Conti, and S. Pelli, "Characterization of erbium doped lithium niobate crystals and waveguides," Opt. Mat., Vol. 28, 1292, 2006.
doi:10.1016/j.optmat.2006.01.030

20. Hua, R. N., H. J. Sun, H. M. Jiang, and C. S. Shi, "Optical spectroscopy properties of KMgF3: Eu2+ nanocrystals and powder synthesized by microemulsion and solvothermal," Chem. Res. Chinese U., Vol. 22, No. 4, 423, 2006.
doi:10.1016/S1005-9040(06)60133-5

21. Sundell, P. G., M. E. Bjorketun, and G. Wahnstrom, "Thermodynamics of doping and vacancy formation in BaZrO3 perovskite oxide from density functional calculations," Phys. Rev. B, Vol. 73, 104112, 2006.
doi:10.1103/PhysRevB.73.104112

22. Kang, S., A. Goyal, J. Li, A. A. Gapud, P. M. Martin, L. Heatherly, J. R. Thompson, D. K. Christen, F. A. List, M. Paranthaman, and D. F. Lee, "High-performance high-Tc superconducting wires," Science, Vol. 311, No. 31, 1911, 2006.
doi:10.1126/science.1124872

23. Shen, S. C., K. Hidajat, L. Y. E. Yu, and S. Kawi, "Simple hydrothermal synthesis of nanostructured and nanorod Zn-Al complex oxides as novel nanocatalysts," Adv. Mater., Vol. 16, No. 6, 541, 2004.
doi:10.1002/adma.200305783

24. Canibano, E., Proprietes spectroscopiques de l'ion Yb3+ dans les familles d'oxydes de molybdates K5Bi(MO4)4, de grenats Y3Al5O12, Gd3Ga5O12, Lu3Al5O12 et de perovskites YAlO3. Analyse de mecanismes d'extinction par concentration et evaluation de l'emission laser, PhD thesis, Universi Claude Bernaud Lyon, France, 2002.

25. Lim, S. F., R. Riehn, W. S. Ryu, N. Khanarian, C.-K. Tung, D. Tank, and R. H. Austin, "In vivo and scanning electron microscopy imaging of upconverting nanophosphors in caenorhabditis elegans," Nano Letters, Vol. 6, No. 2, 169-174, 2006.
doi:10.1021/nl0519175

26. Goldys, E. M., K. Drozdowicz-Tomsia, G. Zhu, H. Yu, S. Jinjun, M. Motlan, and M. Godlewski, "Fluorescence labeling," Optica Applicata, Vol. 36, No. 2-3, 217-224, 2006.