Vol. 11
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-09-11
Rotational Stability of a Charged Dielectric Rigid Body in a Uniform Magnetic Field
By
Progress In Electromagnetics Research Letters, Vol. 11, 103-112, 2009
Abstract
Based on a new concept, i.e., charge moment tensor and the rotational equation of a charged dielectric rigid body about a fixed-point under a uniform external magnetic field, one symmetrical case has been rigorously solved. The rotational stability has been analyzed in detail for two cases, general and symmetrical, respectively, by means of some techniques of matrix analysis.
Citation
Guo-Quan Zhou, "Rotational Stability of a Charged Dielectric Rigid Body in a Uniform Magnetic Field," Progress In Electromagnetics Research Letters, Vol. 11, 103-112, 2009.
doi:10.2528/PIERL09073001
References

1. Zhou, G.-Q., "Charge moment tensor and the magnetic moment of rotational charged bodies," Progress In Electromagnetics Research, Vol. 68, 156-160, 2007.
doi:10.2528/PIER06080603

2. Zhou, G.-Q. and W.-J. Zhou, "The magnetic-moment quadric and conditions of vanishing magnetic moment for a rotational charged body," Progress In Electromagnetics Research, Vol. 70, 211-223, 2007.
doi:10.2529/PIERS061120233608

3. Zhou, G.-Q., "Several rules about the magnetic moment of rotational charged bodies," PIERS Online, Vol. 3, No. 6, 812-816, The Electromagnetics Academy, Cambridge, 2007.
doi:10.1163/156939308787522537

4. Zhou, G.-Q. and C. Guan, "Charge moment tensor and its application to a rotational charged rigid body in a uniform magnetic field," Journal of Electromagnetic Waves and Applications, Vol. 22, 2179-2190, 2008.
doi:10.2528/PIERC08021701

5. Zhou, G.-Q. and X. Xiao, "Dynamical problem of a rotational charged dielectric rigid body in a uniform magnetic field," Progress In Electromagnetics Research C, Vol. 1, 229-240, 2008.
doi:10.1016/j.physleta.2006.08.088

6. Krasheninnikov, S. I., V. I. Shevchenko, and P. K. Shukla, "Spinning of charged dust particle in a magnetized plasma," Physics Letter A, Vol. 361, 133-135, 2007.
doi:10.1103/PhysRevE.62.7309

7. Kroh, H. J. and B. U. Felderhof, "Lorentz torque on a charged sphere rotating in a dielectric fluid in the presence of a uniform magnetic field," Phys. Rev. E, Vol. 62, No. 4, 7309-7314, 2000.
doi:10.1103/PhysRevE.75.026611

8. Dolinsky, Y. and T. Elperin, "Rotation of the leaky dielectric particle in a rotating electric field," Phys. Rev. E, Vol. 75, 026611, 2007.
doi:10.2528/PIER04082801

9. Tchernyi, V. V. and A. Y. Pospelov, "Possible electromagnetic nature of the Saturn's rings: Superconductivity and magnetic levitation," Progress In Electromagnetics Research, Vol. 52, 277-299, 2005.
doi:10.2528/PIER99062502

10. Dmtriev, V., "Tables of the second rank constitutive tensors for linear homogeneous media described by point magnetic groups of symmetry," Progress In Electromagnetics Research, Vol. 28, 43-95, 2000.

11. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, 1984.

12. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons Inc., 1962.

13. Liu, J.-P., Electrodynamics, Higher Education Press, 2004 (in Chinese).

14. Zhou, Y.-B., Theoretical Mechanics, People's Education Press, 1974.