Vol. 178
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-11-20
Enabling Intelligent Metasurfaces for Semi-Known Input
By
Progress In Electromagnetics Research, Vol. 178, 83-91, 2023
Abstract
Compelling evidence suggests that the interaction between electromagnetic metasurfaces and deep learning gives rise to the proliferation of intelligent metasurfaces in the past decade. In general, deep learning offers a transformative force to reform the design and working style of metasurfaces. A majority of the inverse-design literature announce that, given a user-defined input, the pre-trained deep learning models can quickly output the metasurface candidates with high fidelity. However, they largely ignore an important fact, that is, the practical input is always semi-known. In this work, we introduce a generation-elimination network that is robust to semi-known input and information pollution. The network is composed of a generative network to generate a number of possible answers and then a discriminative network to eliminate suboptimal answers. We benchmark the feasibility via two scenes, the on-demand metasurface design of the reflection spectra and the far-field pattern. In the microwave experiment, we fabricated and measured the reconfigurable metasurfaces to automatically meet the semi-known beam steering requirement that widely exist in wireless communication. Our work for the first time answers the question of how to cope with semi-known input, which is ubiquitous in a panoply of real-world applications, such as imaging, sensing, and communication across noisy environment.
Supplementary Information
Citation
Pujing Lin, Chao Qian, Jie Zhang, Jieting Chen, Xiaoyue Zhu, Zhedong Wang, Jiangtao Huangfu, and Hongsheng Chen, "Enabling Intelligent Metasurfaces for Semi-Known Input," Progress In Electromagnetics Research, Vol. 178, 83-91, 2023.
doi:10.2528/PIER23090201
References

1. Liu, Dong, Yue Li, Jianping Lin, Houqiang Li, and Feng Wu, "Deep learning-based video coding: A review and a case study," ACM Computing Surveys, Vol. 53, No. 1, 1-35, Feb. 2020.
doi:10.1145/3368405

2. Wang, Zhihao, Jian Chen, and Steven C. H. Hoi, "Deep learning for image super-resolution: A survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 43, No. 10, 3365-3387, Oct. 2021.
doi:10.1109/TPAMI.2020.2982166

3. Purwins, Hendrik, Bo Li, Tuomas Virtanen, Jan Schlueter, Shuo-Yiin Chang, and Tara Sainath, "Deep learning for audio signal processing," IEEE Journal of Selected Topics in Signal Processing, Vol. 13, No. 2, 206-219, May 2019.
doi:10.1109/JSTSP.2019.2908700

4. Qian, Chao, Yi Yang, Yifei Hua, Chan Wang, Xiao Lin, Tong Cai, Dexin Ye, Erping Li, Ido Kaminer, and Hongsheng Chen, "Breaking the fundamental scattering limit with gain metasurfaces," Nature Communications, Vol. 13, No. 1, 4383, Jul. 2022.
doi:10.1038/s41467-022-32067-9

5. Cai, Tong, Bin Zheng, Jing Lou, Lian Shen, Yihao Yang, Shiwei Tang, Erping Li, Chao Qian, and Hongsheng Chen, "Experimental realization of a superdispersion-enabled ultrabroadband terahertz cloak," Advanced Materials, Vol. 34, No. 47, 2205053, Nov. 2022.
doi:10.1002/adma.202205053

6. Jia, Yuetian, Chao Qian, Zhixiang Fan, Tong Cai, Er-Ping Li, and Hongsheng Chen, "A knowledge-inherited learning for intelligent metasurface design and assembly," Light Science & Applications, Vol. 12, No. 1, 82, Mar. 2023.
doi:10.1038/s41377-023-01131-4

7. He, Qiong, Shulin Sun, and Lei Zhou, "Tunable/Reconfigurable metasurfaces: physics and applications," Research, Vol. 2019, 1849272, 2019.

8. Huang, Cheng, Changlei Zhang, Jianing Yang, Bo Sun, Bo Zhao, and Xiangang Luo, "Reconfigurable metasurface for multifunctional control of electromagnetic waves," Advanced Optical Materials, Vol. 5, No. 22, 1700485, Nov. 2017.
doi:10.1002/adom.201700485

9. Chen, Jieting, Chao Qian, Jie Zhang, Yuetian Jia, and Hongsheng Chen, "Correlating metasurface spectra with a generation-elimination framework," Nature Communications, Vol. 14, No. 1, 4872, Aug. 2023.
doi:10.1038/s41467-023-40619-w

10. Wang, Zhedong, Min Chen, Chao Qian, Zhixiang Fan, Huaping Wang, and Hongsheng Chen, "Reconfigurable matrix multiplier with on-site reinforcement learning," Optics Letters, Vol. 47, No. 22, 5897-5900, Nov. 2022.
doi:10.1364/OL.472729

11. Zhang, Jie, Chao Qian, Jieting Chen, Bei Wu, and Hongsheng Chen, "Uncertainty qualification for metasurface design with amendatory bayesian network," Laser & Photonics Reviews, Vol. 17, No. 5, 2200807, May 2023.
doi:10.1002/lpor.202200807

12. Khatib, Omar, Simiao Ren, Jordan Malof, and Willie J. Padilla, "Deep learning the electromagnetic properties of metamaterials - A comprehensive review," Advanced Functional Materials, Vol. 31, 2101748, Aug. 2021.
doi:10.1002/adfm.202101748

13. Ramprasad, Rampi, Rohit Batra, Ghanshyam Pilania, Arun Mannodi-Kanakkithodi, and Chiho Kim, "Machine learning in materials informatics: Recent applications and prospects," Npj Computational Materials, Vol. 3, 54, Dec. 2017.
doi:10.1038/s41524-017-0056-5

14. Jia, Yuetian, Chao Qian, Zhixiang Fan, Yinzhang Ding, Zhedong Wang, Dengpan Wang, Er-Ping Li, Bin Zheng, Tong Cai, and Hongsheng Chen, "In situ customized illusion enabled by global metasurface reconstruction," Advanced Functional Materials, Vol. 32, No. 19, 2109331, May 2022.
doi:10.1002/adfm.202109331

15. Fan, Z., et al. "Transfer-learning-assisted inverse metasurface design with 30% data savings," Phys. Rev. Appl., Vol. 18, 024022, 2022.
doi:10.1103/PhysRevApplied.18.024022

16. Fan, Zhixiang, Chao Qian, Yuetian Jia, Zhedong Wang, Yinzhang Ding, Dengpan Wang, Longwei Tian, Erping Li, Tong Cai, Bin Zheng, Ido Kaminer, and Hongsheng Chen, "Homeostatic neuro-metasurfaces for dynamic wireless channel management," Science Advances, Vol. 8, No. 27, eabn7905, Jul. 2022.
doi:10.1126/sciadv.abn7905

17. Gao, Li, Xiaozhong Li, Dianjing Liu, Lianhui Wang, and Zongfu Yu, "A bidirectional deep neural network for accurate silicon color design," Advanced Materials, Vol. 31, No. 51, 1905467, Dec. 2019.
doi:10.1002/adma.201905467

18. Qian, Chao, Zhedong Wang, Haoliang Qian, Tong Cai, Bin Zheng, Xiao Lin, Yichen Shen, Ido Kaminer, Erping Li, and Hongsheng Chen, "Dynamic recognition and mirage using neuro-metamaterials," Nature Communications, Vol. 13, No. 1, 2694, May 2022.
doi:10.1038/s41467-022-30377-6

19. Jiang, Jiaqi and Jonathan A. Fan, "Global optimization of dielectric metasurfaces using a physics-driven neural network," Nano Letters, Vol. 19, No. 8, 5366-5372, Aug. 2019.
doi:10.1021/acs.nanolett.9b01857

20. Wiecha, Peter R. and Otto L. Muskens, "Deep learning meets nanophotonics: A generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures," Nano Letters, Vol. 20, No. 1, 329-338, Jan. 2020.
doi:10.1021/acs.nanolett.9b03971

21. Qian, Chao, Bin Zheng, Yichen Shen, Li Jing, Erping Li, Lian Shen, and Hongsheng Chen, "Deep-learning-enabled self-adaptive microwave cloak without human intervention," Nature Photonics, Vol. 14, No. 6, 383, Jun. 2020.
doi:10.1038/s41566-020-0604-2

22. Wang, Zhedong, Chao Qian, Tong Cai, Longwei Tian, Zhixiang Fan, Jian Liu, Yichen Shen, Li Jing, Jianming Jin, Er-Ping Li, Bin Zheng, and Hongsheng Chen, "Demonstration of spider-eyes-like intelligent antennas for dynamically perceiving incoming waves," Advanced Intelligent Systems, Vol. 3, No. 9, 2100066, Sep. 2021.
doi:10.1002/aisy.202100066

23. Raccuglia, Paul, Katherine C. Elbert, Philip D. F. Adler, Casey Falk, Malia B. Wenny, Aurelio Mollo, Matthias Zeller, Sorelle A. Friedler, Joshua Schrier, and Alexander J. Norquist, "Machine-learning-assisted materials discovery using failed experiments," Nature, Vol. 533, No. 7601, 73-76, May 2016.
doi:10.1038/nature17439

24. Qian, Chao, Xiao Lin, Xiaobin Lin, Jian Xu, Yang Sun, Erping Li, Baile Zhang, and Hongsheng Chen, "Performing optical logic operations by a diffractive neural network," Light Science & Applications, Vol. 9, No. 1, 59, Apr. 2020.
doi:10.1038/s41377-020-0303-2

25. Zhang, Jie, Chao Qian, Zhixiang Fan, Jieting Chen, Erping Li, Jianming Jin, and Hongsheng Chen, "Heterogeneous transfer-learning-enabled diverse metasurface design," Advanced Optical Materials, Vol. 10, No. 17, 2200748, Sep. 2022.
doi:10.1002/adom.202200748

26. Wu, Nanxuan, Yuetian Jia, Chao Qian, and Hongsheng Chen, "Pushing the limits of metasurface cloak using global inverse design," Advanced Optical Materials, Vol. 11, No. 7, 2202130, Apr. 2023.
doi:10.1002/adom.202202130

27. Zhu, Xiaoyue, Chao Qian, Yuetian Jia, Jieting Chen, Yuan Fang, Zhixiang Fan, Jie Zhang, Dongdong Li, Reza Abdi-Ghaleh, and Hongsheng Chen, "Realization of index modulation with intelligent spatiotemporal metasurfaces," Advanced Intelligent Systems, Vol. 5, No. 7, 2300065, Jul. 2023.
doi:10.1002/aisy.202300065

28. Kingma, D. P. and M. Welling, "Auto-encoding variational bayes," http://arxiv.org/abs/1312.6114, 2014.

29. Sohn, Kihyuk, Xinchen Yan, and Honglak Lee, "Learning structured output representation using deep conditional generative models," Advances in Neural Information Processing Systems (NIPS 2015), Vol. 28, Montreal, Canada, Dec. 2015.

30. Qian, Chao and Hongsheng Chen, "A perspective on the next generation of invisibility cloaks-intelligent cloaks," Applied Physics Letters, Vol. 118, No. 18, 180501, May 2021.
doi:10.1063/5.0049748

31. Zhen, Zheng, Chao Qian, Yuetian Jia, Zhixiang Fan, Ran Hao, Tong Cai, Bin Zheng, Hongsheng Chen, and Erping Li, "Realizing transmitted metasurface cloak by a tandem neural network," Photonics Research, Vol. 9, No. 5, B229-B235, May 2021.
doi:10.1364/PRJ.418445

32. Wu, Q. and R. Zhang, "Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming," IEEE Trans. Wireless Commun., Vol. 18, 5394-5409, 2019.
doi:10.1109/TWC.2019.2936025

33. Basar, Ertugrul, "Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G," IEEE Transactions on Communications, Vol. 68, No. 5, 3187-3196, May 2020.
doi:10.1109/TCOMM.2020.2971486

34. Hu, Q., et al. "An intelligent programmable omni-metasurface," Laser Photon. Rev., Vol. 16, 2100718, 2022.
doi:10.1002/lpor.202100718

35. Lu, Huan, Jiwei Zhao, Bin Zheng, Chao Qian, Tong Cai, Erping Li, and Hongsheng Chen, "Eye accommodation-inspired neuro-metasurface focusing," Nature Communications, Vol. 14, No. 1, 2023.

36. Zhang, K., et al. "Ultrasensitive self-driven terahertz photodetectors based on low-energy type-II dirac fermions and related van der Waals heterojunctions," Small, Vol. 19, 2205329, 2023.
doi:10.1002/smll.202205329

37. Hu, Z. and et al., "Terahertz nonlinear hall rectifiers based on spin-polarized topological electronic states in 1T-CoTe2," Advanced Materials, Vol. 35, 2209557, 2023.
doi:10.1002/adma.202209557

38. Rizza, Carlo, Debasis Dutta, Barun Ghosh, Francesca Alessandro, Chia-Nung Kuo, Chin Shan Lue, Lorenzo S. Caputi, Arun Bansil, Vincenzo Galdi, Amit Agarwal, Antonio Politano, and Anna Cupolillo, "Extreme optical anisotropy in the type-II dirac semimetal NiTe2 for applications to nanophotonics," ACS Applied Nano Materials, Vol. 5, No. 12, 18531-18536, Dec. 2022.
doi:10.1021/acsanm.2c04340

39. Daws, Sawsan, Parth Kotak, Chia-Nung Kuo, Chin Shan Lue, Antonio Politano, and Caterina Lamuta, "Platinum diselenide PtSe2: An ambient-stable material for flexible electronics," Materials Science and Engineering B-Advanced Functional Solid-State Materials, Vol. 283, 115824, Sep. 2022.

40. Vobornik, Ivana, Anan Bari Sarkar, Libo Zhang, Danil W. Boukhvalov, Barun Ghosh, Lesia Piliai, Chia-Nung Kuo, Debashis Mondal, Jun Fujii, Chin Shan Lue, Mykhailo Vorokhta, Huaizhong Xing, Lin Wang, Amit Agarwal, and Antonio Politano, "Kitkaite nitese, an ambient-stable layered dirac semimetal with low-energy type-ii fermions with application capabilities in spintronics and optoelectronics," Advanced Functional Materials, Vol. 31, No. 52, 2106101, Dec. 2021.
doi:10.1002/adfm.202106101

41. Faenzi, M., et al. "Metasurface antennas: New models, applications and realizations," Sci. Rep., Vol. 9, 10178, 2019.
doi:10.1038/s41598-019-46522-z

42. Badawe, M. E., T. S. Almoneef, and O. M. Ramahi, "A true metasurface antenna," Sci. Rep., Vol. 6, 19268, 2016.
doi:10.1038/srep19268

43. Tan, Q., C. Qian, T. Cai, B. Zheng, and H. Chen, "Solving multivariable equations with tandem metamaterial kernels," Progress In Electromagnetics Research, Vol. 175, 139-147, 2022.
doi:10.2528/PIER22060601

44. Shou, Y., Y. Feng, Y. Zhang, H. Chen, and H. Qian, "Deep learning approach based optical edge detection using ENZ layers," Progress In Electromagnetics Research, Vol. 175, 81-89, 2022.
doi:10.2528/PIER22061403

45. Xie, H., T. Hu, Z. Wang, Y. Yang, X. Hu, W. Qi, and H. Liu, "A physics-based HIE-FDTD method for electromagnetic modeling of multi-band frequency selective surface," Progress In Electromagnetics Research, Vol. 173, 129-140, 2022.
doi:10.2528/PIER22012103