Vol. 175
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-09-23
Miniaturized Photonic and Microwave Integrated Circuits Based on Surface Plasmon Polaritons
By
Progress In Electromagnetics Research, Vol. 175, 105-125, 2022
Abstract
Photonic integrated circuits (PICs) and microwave integrated circuits (MICs) have been widely studied, but both of them face the challenge of miniaturization. On one hand, the construction of photonic elements requires spaces proportional to wavelength, and on the other hand, electromagnetic compatibility issues make it challenging to reach high-density layouts for MICs. In this paper, we review the research advances of miniaturized PICs and MICs based on surface plasmon polaritons (SPPs). By introducing SPPs, miniaturized photonic elements at subwavelength scales are realized on PICs, which can be used for highly integrated interconnects, biosensors, and visible light wireless communications. For MICs, since the metals behave as perfect conductors rather than plasmonic materials at microwave frequencies, plasmonic metamaterials are proposed to support spoof SPPs. Spoof SPPs possess similar characteristics to SPPs and can be used to realize high-density channels on MICs. Moreover, combining the latest theoretical research on SPPs, future tendencies of SPP-based MICs are discussed as well, including further miniaturization, digitization, and systematization.
Citation
Dayue Yao, Pei Hang He, Haochi Zhang, Jiawen Zhu, Mingzhe Hu, and Tie-Jun Cui, "Miniaturized Photonic and Microwave Integrated Circuits Based on Surface Plasmon Polaritons," Progress In Electromagnetics Research, Vol. 175, 105-125, 2022.
doi:10.2528/PIER22060501
References

1. You, X. H., C. X. Wang, J. Huang, X. Q. Gao, Z. C. Zhang, M. Wang, Y. M. Huang, C. Zhang, Y. X. Jiang, J. H. Wang, M. Zhu, B. Sheng, D. M. Wang, Z. W. Pan, P. C. Zhu, Y. Yang, Z. N. Liu, P. Zhang, X. F. Tao, S. Q. Li, Z. Chen, X. Y. Ma, C. L. I, S. F. Han, K. Li, C. K. Pan, Z. M. Zheng, L. Hanzo, X. M. Shen, Y. J. Guo, Z. G. Ding, H. Haas, W. Tong, P. Y. Zhu, G. H. Yang, J. Wang, E. G. Larsson, H. Q. Ngo, W. Hong, H. M. Wang, D. B. Hou, J. X. Chen, Z. Chen, Z. C. Hao, G. Y. Li, R. Tafazolli, Y. Gao, H. V. Poor, G. P. Fettweis, and Y. C. Liang, "Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts," Sci. China Inform. Sci., Vol. 64, 2021.

2. Wetzstein, G., A. Ozcan, S. Gigan, S. H. Fan, D. Englund, M. Soljacic, C. Denz, D. A. B. Miller, and D. Psaltis, "Inference in artificial intelligence with deep optics and photonics," Nature, Vol. 588, 39-47, 2020.

3. Alfaras, M., W. Primett, M. Umair, C. Windlin, P. Karpashevich, N. Chalabianloo, D. Bowie, C. Sas, P. Sanches, K. Hook, C. Ersoy, and H. Gamb, "Biosensing and actuation-platforms coupling body input-output modalities for affective technologies," Sensors-Basel, Vol. 20, 2020.

4. Koos, C., W. Freude, J. Leuthold, M. Kohl, L. R. Dalton, W. Bogaerts, M. Lauermann, S. Wolf, C. Weimann, A. Melikyan, N. Lindenmann, M. R. Billah, S. Muehlbrandt, S. Koeber, R. Palmer, K. Koehnle, L. Alloatti, D. L. Elder, A. L. Giesecke, T. Wahlbrink, and IEEE, "Silicon-Organic Hybrid (SOH) integration and photonic multi-chip systems: Extending the capabilities of the silicon photonic platform," IEEE Photonics Conference, Reston, VA, 2015.

5. Ben Ahmed, A. and A. Ben Abdallah, "Hybrid silicon-photonic network-on-chip for future generations of high-performance many-core systems," Journal of Supercomputing, Vol. 71, 4446-4475, 2015.

6. Gadot, F., T. Brillat, E. Akmansoy, and A. de Lustrac, "New type of metallic photonic bandgap material suitable for microwave applications," Electron. Lett., Vol. 36, 640-641, 2000.

7. Garenaux, K., T. Merlet, M. Alouini, J. Lopez, N. Vodjdani, and R. Boula-Picard, "Recent breakthroughs in RF photonics for radar systems," IEEE Aerospace and Electronic Systems Magazine, Vol. 22, 3-8, 2007.

8. Arai, Y., M. Sato, H. T. Yamada, T. Hamada, K. Nagai, and H. I. Fujishiro, "60-GHz flip-chip assembled MIC design considering chip-substrate effect," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 2261-2266, 1997.

9. Miyashita, D., S. Kousai, T. Suzuki, and J. Deguchi, "A neuromorphic chip optimized for deep learning and CMOS technology with time-domain analog and digital mixed-signal processing," IEEE J. Solid-State Circuits, Vol. 52, 2679-2689, 2017.

10. Qian, G., K. Qian, X. Gu, Y. Kong, and T. Chen, "Integrated chip technologies for microwave photonics," Journal of Radars, Vol. 8, 262-280, 2019.

11. Wang, Z., X. Jia, H. Wu, F. Peng, Y. Fu, Y. Rao, and IEEE, "Towards ultra-long-distance distributed fiber-optic sensing," 25th International Conference on Optical Fibre Sensors (OFS), South Korea, 2017.

12. Galas, J., D. Litwin, N. Blocki, and M. Daszkiewicz, "Photonic technology revolution influence on the defence area," Conference on Electro-Optical Remote Sensing XI, Warsaw, Poland, 2017.

13. Lee, E.-H., "VLSI photonic interconnection of dielectric and plasmonic nano-wires and devices," 13th International Conference on Transparent Optical Networks (ICTON), Stockholm, Sweden, 2011.

14. Zhang, W. and J. Yao, "Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation," J. Lightwave Technol., Vol. 36, 4655-4663, 2018.

15. Yuan, X. G., Y. Yang, X. Yan, Y. A. Zhang, and X. Zhang, "Ultra-compact multichannel optical waveguide crossings designed by a particle swarm optimized method," Opt. Commun., Vol. 503, 2022.

16. Leslie, M., "Light-based chips promise to slash energy use and increase speed," Engineering, Vol. 7, 1195-1196, 2021.

17. Moss, D., "11Tera-FLOP/s photonic convolutional accelerator for optical neural networks," Center for Open Science, 2021.

18. Liu, Y., K. Xu, S. Wang, W. Shen, H. Xie, Y. Wang, S. Xiao, Y. Yao, J. Du, Z. He, and Q. Song, "Arbitrarily routed mode-division multiplexed photonic circuits for dense integration," Nat. Commun., Vol. 10, 2019.

19. Torres, J. P. and J. C. Freire, "MMIC chips on board for wireless communications," 4th International Conference on Millimeter and Submillimeter Waves and Applications, 112-116, San Diego, CA, 1998.

20. Branch, J., X. Guo, L. Gao, A. Sugavanam, J. J. Lin, and K. K. O, "Wireless communication in a flip-chip package using integrated antennas on silicon substrates," IEEE Electron Device Lett., Vol. 26, 115-117, 2005.

21. Wu, Y. L., M. D. Kong, Z. Zhuang, and W. M. Wang, "Creating distinctive connections between multifunctional microwave circuits and mobile-terminal radio-frequency integrated chips using integrated passive device technology," China Communications, Vol. 18, 121-132, 2021.

22. Lee, S. K., B. Kim, H. J. Park, and J. Y. Sim, "A 5 Gb/s single-ended parallel receiver with adaptive crosstalk-induced jitter cancellation," IEEE J. Solid-State Circuits, Vol. 48, 2118-2127, 2013.

23. Smith, H., A. Deutsch, S. Mehrotra, D. Widiger, M. Bowen, A. Dansky, G. Kopcsay, B. Krauter, and I. IEEE, "Frequency dependent RLC crosstalk evaluation of a high performance S/390 microprocessor chip," 9th IEEE Topical Meeting on Electrical Performance of Electronic Packaging, 321-324, Scottsdale, Az, 2000.

24. Lee, G. A., H. Y. Lee, and IEEE, "Suppression of leakage and crosstalk in typical millimeter-wave flip-chip packages," 6th Topical Meeting on Electrical Performance of Electronic Packaging, 195-198, San Jose, CA, 1997.

25. Wen, X. M., Y. G. Bi, F. S. Yi, X. L. Zhang, Y. F. Liu, W. Q. Wang, J. Feng, and H. B. Sun, "Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes," Opto-Electronic Advances, Vol. 4, 2021.

26. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.

27. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.

28. Chen, Q., L. Liang, Q. L. Zheng, Y. X. Zhang, and L. Wen, "On-chip readout plasmonic mid-IR gas sensor," Opto-Electronic Advances, Vol. 3, 2020.

29. Hu, A. Q., S. Liu, J. Y. Zhao, T. Wen, W. D. Zhang, Q. H. Gong, Y. Q. Meng, Y. Ye, and G. W. Lu, "Controlling plasmon-exciton interactions through photothermal reshaping," Opto-Electronic Advances, Vol. 3, 2020.

30. Jones, A. C., R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, "Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires," Nano Lett., Vol. 9, 2553, 2009.

31. Zhang, L., Z. Chen, K. Zhang, L. Wang, H. Xu, L. Han, W. Guo, Y. Yang, C.-N. Kuo, C. S. Lue, D. Mondal, J. Fuji, I. Vobornik, B. Ghosh, A. Agarwal, H. Xing, X. Chen, A. Politano, and W. Lu, "High-frequency rectifiers based on type-II Dirac fermions," Nat. Commun., Vol. 12, 202.

32. Zhang, L., C. Guo, C.-N. Kuo, H. Xu, K. Zhang, B. Ghosh, J. De Santis, D. W. Boukhvalov, I. Vobornik, V. Paolucci, C. S. Lue, H. Xing, A. Agarwal, L. Wang, and A. Politano, "Terahertz photodetection with Type-II Dirac fermions in transition-metal ditellurides and their heterostructures," Physica Status Solidi (RRL) --- Rapid Research Letters, Vol. 15, 2100212, 2021.

33. Wang, L., L. Han, W. Guo, L. Zhang, C. Yao, Z. Chen, Y. Chen, C. Guo, K. Zhang, C.-N. Kuo, C. S. Lue, A. Politano, H. Xing, M. Jiang, X. Yu, X. Chen, and W. Lu, "Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting," Light: Science & Amp. Applications, Vol. 11, 2022.

34. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Lett., Vol. 16, 80-87, 2015.

35. Mitrofanov, O., L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, L. Sorba, and M. S. Vitiello, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Sci. Rep. --- UK, Vol. 7, 2017.

36. Pogna, E. A. A., L. Viti, A. Politano, M. Brambilla, G. Scamarcio, and M. S. Vitiello, "Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy," Nat. Commun., Vol. 12, 2021.

37. Agarwal, A., M. S. Vitiello, L. Viti, A. Cupolillo, and A. Politano, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, 8938-8946, 2018.

38. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, 2014.

39. Bao, Q. and K. P. Loh, "Graphene photonics, plasmonics, and broadband optoelectronic devices," ACS Nano, Vol. 6, 3677-3694, 2012.

40. Low, T., "Graphene plasmonics for terahertz to mid-infrared applications," J. Phys.: Condens. Matter, Vol. 26, 123201, 2014.

42. Politano, A., V. M. Silkin, I. A. Nechaev, M. S. Vitiello, L. Viti, Z. S. Aliev, M. B. Babanly, G. Chiarello, P. M. Echenique, and E. V. Chulk, "Interplay of surface and dirac plasmons in topological insulators: The case of Bi2Se3," Phys. Rev. Lett., Vol. 115, 2015.

43. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," Apl. Mater., Vol. 5, 035504, 2017.

44. Sadhukhan, K., A. Politano, and A. Agarwal, "Novel undamped gapless plasmon mode in a tilted Type-II Dirac semimetal," Phys. Rev. Lett., Vol. 124, 2020.

45. Politano, A., H. K. Yu, D. Farías, and G. Chiarello, "Multiple acoustic surface plasmons in graphene/Cu(111) contacts," Phys. Rev. B, Vol. 97, 2018.

46. Dutta, D., B. Ghosh, B. Singh, H. Lin, A. Politano, A. Bansil, and A. Agarwal, "Collective plasmonic modes in the chiral multifold fermionic material CoSi," Phys. Rev. B, Vol. 105, 2022.

47. Politano, A., A. R. Marino, V. Formoso, D. Farías, R. Miranda, and G. Chiarello, "Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111)," Phys. Rev. B, Vol. 84, 2011.

48. Chiarello, G., J. Hofmann, Z. Li, V. Fabio, L. Guo, X. Chen, S. Das Sarma, and A. Politano, "Tunable surface plasmons in Weyl semimetals TaAs and NbAs," Phys. Rev. B, Vol. 99, 2019.

49. Schuller, J. A., E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater., Vol. 9, 193-204, 2010.

50. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847-848, 2004.

51. Hibbins, A. P., B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science, Vol. 308, 670-672, 2005.

52. Yu, N. F., Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, "Designer spoof surface plasmon structures collimate terahertz laser beams," Nat. Mater., Vol. 9, 730-735, 2010.

53. Kats, M. A., D. Woolf, R. Blanchard, N. F. Yu, and F. Capasso, "Spoof plasmon analogue of metal-insulator-metal waveguides," Opt. Express, Vol. 19, 14860-14870, 2011.

54. Woolf, D., M. A. Kats, and F. Capasso, "Spoof surface plasmon waveguide forces," Opt. Lett., Vol. 39, 517-520, 2014.

55. Erementchouk, M., S. R. Joy, and P. Mazumder, "Electrodynamics of spoof plasmons in periodically corrugated waveguides," Proceedings of the Royal Society A --- Mathematical Physical and Engineering Sciences, Vol. 472, 2016.

56. Zhang, H. C., P. H. He, Z. X. Liu, W. X. Tang, A. Aziz, J. Xu, S. Liu, X. Y. Zhou, and T. J. Cui, "Dispersion analysis of deep-subwavelength-decorated metallic surface using field-network joint solution," IEEE Transactions on Antennas and Propagation, Vol. 66, 2923-2933, 2018.

57. Zhang, H. C., P. H. He, X. X. Gao, J. Y. Lu, T. J. Cui, and Y. Luo, "Loss analysis of plasmonic metasurfaces using field-network-joint method," IEEE Transactions on Antennas and Propagation, Vol. 67, 3521-3526, 2019.

58. He, P. H., L. Y. Niu, Y. Fan, H. C. Zhang, L. P. Zhang, D. Y. Yao, W. X. Tang, and T. J. Cui, "Active odd-mode-metachannel for single-conductor systems," Opto-Electronic Advances, Vol. 5, 210119-210119, 2022.

59. Shen, X. P., T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, "Conformal surface plasmons propagating on ultrathin and flexible films," Proc. Natl. Acad. Sci. U. S. A., Vol. 110, 40-45, 2013.

60. Shen, X. P. and T. J. Cui, "Planar plasmonic metamaterial on a thin film with nearly zero thickness," Applied Physics Letters, Vol. 102, 2013.

61. Barnes, W. L., "Surface plasmon-polariton length scales: A route to sub-wavelength optics," J. Opt. A --- Pure Appl. Op., Vol. 8, S87-S93, 2006.

62. Zia, R., J. A. Schuller, A. Chandran, and M. L. Brongersma, "Plasmonics: The next chip-scale technology," Materials Today, Vol. 9, 20-27, 2006.

63. Meng, Y., Y. Z. Chen, L. H. Lu, Y. M. Ding, A. Cusano, J. A. Fan, Q. M. Hu, K. Y. Wang, Z. W. Xie, Z. T. Liu, Y. M. Yang, Q. Liu, M. L. Gong, Q. R. Xiao, S. L. Sun, M. M. Zhang, X. C. Yuan, and X. J. Ni, "Optical meta-waveguides for integrated photonics and beyond," Light-Sci. Appl., Vol. 10, 2021.

64. Pile, D. F. P., T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett., Vol. 87, 261114, 2005.

65. Liu, L., Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express, Vol. 13, 6645-6650, 2005.

66. Dionne, J. A., L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B, Vol. 73, 035407, 2006.

67. Ajoy, A., Y. X. Liu, K. Saha, L. Marseglia, J. C. Jaskula, U. Bissbort, and P. Cappellaro, "Quantum interpolation for high-resolution sensing," Proc. Natl. Acad. Sci. U. S. A., Vol. 114, 2149, 2017.

68. Istrate, E. and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phys., Vol. 78, 455, 2006.

69. Liu, L., Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express, Vol. 13, 6645, 2005.

70. Oulton, R. F., V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics, Vol. 2, 496-500, 2008.

71. Bian, Y. S., Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, "Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement," Opt. Express, Vol. 18, 23756-23762, 2010.

72. Avrutsky, I., R. Soref, and W. Buchwald, "Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap," Opt. Express, Vol. 18, 348-363, 2010.

73. Bian, Y. S., Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, "Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement," Opt. Express, Vol. 19, 22417-22422, 2011.

74. Oulton, R. F., V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics, Vol. 2, 496-500, 2008.

75. Oulton, R. F., V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature, Vol. 461, 629-632, 2009.

76. Bian, Y., Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, "Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides," IEEE Photonics Technol. Lett., Vol. 23, 884-886, 2011.

77. Zhang, X. Y., A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, "Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides," Opt. Express, Vol. 18, 18945-18959, 2010.

78. Chu, H. S., E. P. Li, P. Bai, and R. Hegde, "Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components," Appl. Phys. Lett., Vol. 96, 221103, 2010.

79. Wu, M., Z. H. Han, and V. Van, "Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale," Opt. Express, Vol. 18, 11728-11736, 2010.

80. Fukuhara, M., M. Ota, A. Takeda, T. Aihara, H. Sakai, Y. Ishii, and M. Fukuda, "Surface-plasmon waveguides as transmission lines for optical signal and electrical bias," IEEE J. Lightw. Technol., Vol. 32, 3888-8724, 2014.

81. Rakhshani, M. R. and M. A. Mansouri-Birjandi, "Dual wavelength demultiplexer based on metal-insulator-metal plasmonic circular ring resonators," J. Mod. Opt., Vol. 63, 1078-1086, 2016.

82. Ding, K., M. T. Hill, Z. C. Liu, L. J. Yin, P. J. Veldhoven, and C. Z. Ning, "Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature," Opt. Exp., Vol. 21, 4728-4733, 2013.

83. Cho, C.-H., C. O. Aspetti, J. Park, and R. Agarwal, "Silicon coupled with plasmon nanocavities generates bright visible hot luminescence," Nature Photon., Vol. 7, 285-289, 2013.

84. Berini, P., "Surface plasmon photodetectors and their applications," Laser Photon. Rev., Vol. 8, 197-220, 2014.

85. Ishii, T., J. Fujikata, K. Makita, T. Baba, and K. Ohashi, "Si Nano-photodiode with a surface plasmon antenna," Jpn. J. Appl. Phys., Vol. 44, 364-366, 2005.

86. Melikyan, A., L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, "High-speed plasmonic phase modulators," Nature Photon., Vol. 8, 229-233, 2014.

87. Zhu, S., G. Q. Lo, and D. L. Kwong, "Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators," Opt. Exp., Vol. 18, 27802-27819, 2010.

88. Fukuhara, M., M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda, "Low-loss waveguiding and detection structure for surface plasmon polaritons," Appl. Phys. Lett., Vol. 104, 081111, 2014.

89. Aihara, T., H. Sakai, A. Takeda, S. Okahisa, M. Fukuhara, M. Ota, Y. Ishii, and M. Fukuda, "Coherent plasmonic interconnection in silicon-based electrical circuit," J. Lightwave Technol., Vol. 33, 2139-2145, 2015.

90. Nehl, C. L., H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett., Vol. 6, 683-688, 2006.

91. Joshi, G. K., K. N. Blodgett, B. B. Muhoberac, M. A. Johnson, K. A. Smith, and R. Sardar, "Ultrasensitive photoreversible molecular sensors of azobenzene-functionalized plasmonic nanoantennas," Nano Lett., Vol. 14, 532-540, 2014.

92. Liu, N., M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, "Nanoantenna-enhanced gas sensing in a single tailored nanofocus," Nat. Mater., Vol. 10, 631-636, 2011.

93. Zeng, B., Y. Gao, and F. J. Bartoli, "Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonicnanogratings," Appl. Phys. Lett., Vol. 105, 161106, 2014.

94. Zijlstra, P., P. M. R. Paulo, and M. Orrit, "Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod," Nat. Nanotechnol., Vol. 7, 379-382, 2012.

95. Lesuffleur, A., H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett., Vol. 90, 243110, 2007.

96. Wang, Y. J., J. J. Chen, C. W. Sun, K. X. Rong, H. Li, and Q. H. Gong, "An ultrahigh-contrast and broadband on-chip refractive index sensor based on a surface-plasmon-polariton interferometer," Analyst, Vol. 140, 207890, 2015.

97. Novotny, L. and N. van Hulst, "Antennas for light," Nat. Photonics., Vol. 5, 83-90, 2011.

98. Gleb, M. A., C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, "Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas," Nat. Photonics., Vol. 8, 835-840, 2014.

99. Merlo, J. M., N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D'Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, "Wireless communication system via nanoscale plasmonic antennas," Sci. Rep., Vol. 6, 31710, 2016.

100. Heni, W., B. Baeuerle, H. Mardoyan, F. Jorge, J. M. Estaran, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, M. Goix, J. Y. Dupuy, M. Destraz, C. Hoessbacher, Y. Fedoryshyn, H. J. Xu, D. L. Elder, L. R. Dalton, J. Renaudier, and J. Leuthold, "Ultra-high-speed 2 : 1 digital selector and plasmonic modulator IM/DD transmitter operating at 222 GBaud for intra-datacenter applications," Lightwave Technol., Vol. 38, 2734-2739, 2020.

101. Atabaki, A. H., S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. Popovic, V. M. Stojanovic, and R. J. Ram, "Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip," Nature, Vol. 556, 349-354, 2018.

102. Stojanovic, L., R. J. Ram, M. Popovic, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, "Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes," Opt. Express, Vol. 26, 13106-13121, 2018.

103. Weeber, J. C., J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. Colas-des-Francs, K. Hammani, A. Dereux, C. Hoessbacher, U. Koch, J. Leuthold, K. Rohracher, A. L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, N. Pleros, and D. Tsiokos, "Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths," Opt. Express, Vol. 25, 394-408, 2017.

104. Ueli, K., C. Uhl, H. Hettrich, Y. Fedoryshyn, C. Hoessbacher, W. Heni, B. Baeuerle, B. I. Bitachon, A. Josten, M. Ayata, H. Xu, D. L. Elder, L. R. Dalton, E. Mentovich, P. Bakopoulos, S. Lischke, A. Krüger, L. Zimmermann, D. Tsiokos, N. Pleros, M. Möller, and J. Leuthold, "A monolithic bipolar CMOS electronic-plasmonic high-speed transmitter," Nat. Electron., Vol. 3, 338-345, 2020.

105. Zhou, Y. J., Q. Jiang, and T. J. Cui, "Bidirectional bending splitter of designer surface plasmons," Applied Physics Letters, Vol. 99, 111904, 2011.

106. Nazari, M. H. and A. E. Neyestanak, "A 15-Gb/s 0.5-mW/Gbps two-tap DFE receiver with far-end crosstalk cancellation," IEEE J. Solid-State Circuits, Vol. 47, 2420-2432, 2012.

107. Liang, Y., H. Yu, H. C. Zhang, C. Yang, and T. J. Cui, "On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS," Sci. Rep. --- UK, Vol. 5, 2015.

108. Liang, Y., H. Yu, J. Zhao, W. Yang, and Y. Wang, "An energy efficient and low cross-talk CMOS sub-THz I/O with surface-wave modulator and interconnect,", presented at the 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), July 2015.

109. Ma, H. F., X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, "Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons," Laser & Photonics Reviews, Vol. 8, 146-151, 2014.

110. Kianinejad, A., Z. N. Chen, and C. W. Qiu, "Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 1817-1825, 2015.

111. Yan, R. T., H. C. Zhang, P. H. He, Z. X. Wang, X. Zhang, X. Fu, and T. J. Cui, "A broadband and high-efficiency compact transition from microstrip line to spoof surface plasmon polaritons," IEEE Microwave and Wireless Components Letters, Vol. 30, 23-26, 2020.

112. Liang, Y., H. Yu, J. C. Wen, A. A. A. Apriyana, N. Li, Y. Luo, and L. L. Sun, "On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS," Sci. Rep. --- UK, Vol. 6, 2016.

113. Liang, Y., H. Yu, G. Y. Feng, A. A. A. Apriyana, X. J. Fu, and T. J. Cui, "An energy-efficient and low-crosstalk sub-THz I/O by surface plasmonic polariton interconnect in CMOS," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, 2762-2774, 2017.

114. Young, I. A., E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, "Optical I/O technology for Tera-scale computing," IEEE J. Solid-State Circuits, Vol. 45, 235-248, 2010.

115. Byun, G. S., Y. Kim, J. Kim, S. W. Tam, and M. C. F. Chang, "An energy-efficient and high-speed mobile memory I/O interface using simultaneous bi-directional dual (Base plus RF)-band signaling," IEEE J. Solid-State Circuits, Vol. 47, 117-130, 2012.

116. Kim, B., Y. Liu, T. O. Dickson, J. F. Bulzacchelli, and D. J. Friedman, "A 10-Gb/s compact low-power serial I/O with DFE-IIR equalization in 65-nm CMOS," IEEE J. Solid-State Circuits, Vol. 44, 3526-3538, 2009.

117. Joy, S. R., M. Erementchouk, H. Yu, and P. Mazumder, "Spoof plasmon interconnects-communications beyond RC limit," IEEE Trans. Commun., Vol. 67, 599-610, 2019.

118. Guo, Y. J., K. D. Xu, X. J. Deng, X. Cheng, and Q. Chen, "Millimeter-wave on-chip bandpass filter based on spoof surface plasmon polaritons," IEEE Electron Device Lett., Vol. 41, 1165-1168, 2020.

119. Xu, K. D., Y. J. Guo, Q. Yang, Y. L. Zhang, X. J. Deng, A. X. Zhang, and Q. Chen, "On-chip GaAs-based spoof surface plasmon polaritons at millimeter-wave regime," IEEE Photonic Tech. L., Vol. 33, 255-258, 2021.

120. Lai, R. B., J. J. Kuo, and H. Wang, "A 60-110 GHz transmission-line integrated SPDT switch in 90 nm CMOS technology," IEEE Microwave and Wireless Components Letters, Vol. 20, 85-87, 2010.

121. Zhang, B., Y. Z. Xiong, L. Wang, and S. M. Hu, "A switch-based ASK modulator for 10 Gbps 135 GHz communication by 0.13 μm MOSFET," IEEE Microwave and Wireless Components Letters, Vol. 22, 415-417, 2012.

122. Meng, X. Y., B. Y. Chi, and Z. H. Wang, "A 152-GHz OOK transmitter with 3-dBm output power in 65-nm CMOS," IEEE Microwave and Wireless Components Letters, Vol. 27, 748-750, 2017.

123. Liang, Y., C. C. Boon, C. Y. Li, X. L. Tang, H. J. Ng, D. Kissinger, Y. Wang, Q. F. Zhang, and H. Yu, "Design and analysis of D-band on-chip modulator and signal source based on split-ring resonator," IEEE Transactions on Very Large Scale Integration (Vlsi) Systems, Vol. 27, 1513-1526, 2019.

124. He, P. H., H. C. Zhang, X. X. Gao, L. Y. Niu, W. X. Tang, J. Y. Lu, L. P. Zhang, and T. J. Cui, "A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements," Opto-Electronic Advances, Vol. 2, 2019.

125. Zhang, H. C., T. J. Cui, Y. Luo, J. J. Zhang, J. Xu, P. H. He, and L. P. Zhang, "Active digital spoof plasmonics," National Science Review, Vol. 7, 261-269, 2020.

126. Zhang, H. C., L. P. Zhang, P. H. He, J. Xu, C. Qian, F. J. Garcia-Vidal, and T. J. Cui, "A plasmonic route for the integrated wireless communication of subdiffraction-limited signals," Light-Sci. Appl., Vol. 9, 2020.