Vol. 72
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-01-24
Retrieval of Major Greenhouse Gas Profiles with LEO-Ground Infrared Laser Occultation (LGIO) Technique
By
Progress In Electromagnetics Research B, Vol. 72, 149-168, 2017
Abstract
A LEO-ground infrared laser occultation (LGIO) technique is proposed to retrieve the greenhouse gas (GHG) profiles around a specific location, including the analysis of key factors and practical issues that may affects its efficacy. A harmony search with ensemble consideration (HS-EC) algorithm is applied to retrieve the volume mixing ratio (VMR) profiles of H2O and three major GHGs, CO2, CH4 and N2O. The vertical resolution of retrieved GHG profiles is 1 km from ground level up to 20 km at height. The errors in VMR of H2O, CH4, N2O and CO2 are below 10, 5, 5 and 3%, respectively, up to 45 km above ground.
Citation
Mu-Min Chiou, and Jean-Fu Kiang, "Retrieval of Major Greenhouse Gas Profiles with LEO-Ground Infrared Laser Occultation (LGIO) Technique," Progress In Electromagnetics Research B, Vol. 72, 149-168, 2017.
doi:10.2528/PIERB16110701
References

1. Kursinski, E. R., G. A. Hajj, W. I. Bertiger, S. S. Leroy, T. K. Meehan, L. J. Romans, J. T. Schofeld, D. J. McCleese, W. G. Melbourne, and C. L. Thornton, "Initial results of radio occultation observations of Earth's atmosphere using the Global Positioning System," Science, Vol. 271, No. 5252, 1107-1110, 1996.
doi:10.1126/science.271.5252.1107

2. Schweitzer, S., "The ACCURATE concept and the infrared laser occultation technique: Mission design and assessment of retrieval performance," Sci. Rep., No. 34, Wegener Center for Climate and Global Change, Univ. of Graz, Jun. 2010.

3. Schweitzer, S., G. Kirchengast, M. Schwaerz, J. Fritzer, and M. E. Gorbunov, "Thermodynamic state retrieval from microwave occultation data and performance analysis based on end-to-end simulations," J. Geophys. Res. Atmos., Vol. 116, No. D10, D10301, May 2011.
doi:10.1029/2010JD014850

4. Proschek, V., G. Kirchengast, and S. Schweitzer, "Greenhouse gas profiling by infrared-laser and microwave occultation: Retrieval algorithm and demonstration results from end-to-end simulations," Atmos. Measure. Tech. Dis., Vol. 4, No. 2, 2273-2328, Oct. 2011.
doi:10.5194/amtd-4-2273-2011

5. Kirchengast, G. and S. Schweitzer, "Climate benchmark profiling of greenhouse gases and thermodynamic structure and wind from space," Geophys. Res. Lett., Vol. 38, No. 13, L13701, Jul. 2011.

6. Proschek, V., G. Kirchengast, C. Emde, and S. Schweitzer, "Greenhouse gas profiling by infrared-laser and microwave occultation in cloudy air: Results from end-to-end simulations," J. Geophys. Res. Atmos., Vol. 119, No. 21, 12,372-12,390, 2014.
doi:10.1002/2014JD021938

7. Pelliccia, F., F. Pacifici, S. Bonafoni, P. Basili, N. Pierdicca, P. Ciotti, and W. J. Emery, "Neural networks for arctic atmosphere sounding from radio occultation data," IEEE Trans. Geosci. Remote Sensing, Vol. 49, No. 12, 4846-4855, Dec. 2011.
doi:10.1109/TGRS.2011.2153859

8. Sokolovskiy, S., "Effect of super refraction on inversions of radio occultation signals in the lower troposphere," Radio Science, Vol. 38, No. 3, 1058, Jun. 2003.
doi:10.1029/2002RS002728

9. Von Engeln, A. and J. Teixeira, "A ducting climatology derived from the European centre for medium-range weather forecasts global analysis fields," J. Geophys. Res. Atmos., Vol. 109, No. D18, D18104, Sep. 2004.
doi:10.1029/2003JD004380

10. Zuffada, C., G. A. Hajj, and E. R. Kursiniski, "A novel approach to atmospheric profiling with a mountain-based or airborne GPS receiver," J. Geophys. Res. Atmos., Vol. 104, No. D20, 24435-24447, Oct. 1999.
doi:10.1029/1999JD900766

11. Wang, H. G., Z. S. Wu, S. F. Kang, and Z. W. Zhao, "Monitoring the marine atmospheric refractivity profiles by ground-based GPS occultation," IEEE Geosci. Remote Sensing Lett., Vol. 10, No. 4, 962-965, Jul. 2013.
doi:10.1109/LGRS.2012.2227294

12. Wu, X., X. Wang, and D. Lv, "Retrieval of vertical distribution of tropospheric refractivity through ground-based GPS observation," Adv. Atmos. Sci., Vol. 31, No. 1, 37-47, Jan. 2014.
doi:10.1007/s00376-013-2215-z

13. Lowry, A. R., C. Rocken, S. V. Sokolovskiy, and K. D. Anderson, "Vertical profiling of atmospheric refractivity from ground-based GPS," Radio Science, Vol. 37, No. 3, 13-1-19, Jun. 2002.
doi:10.1029/2000RS002565

14. Geem, Z. W., "Improved harmony search from ensemble of music players," Knowledge-based Intelligent Information and Engineering Systems, 86-93, Springer, 2006.
doi:10.1007/11892960_11

15. Geem, Z. W., "Optimal cost design of water distribution networks using harmony search," Engr. Optim., Vol. 38, No. 3, 259-277, 2006.
doi:10.1080/03052150500467430

16. Bonsch, G. and E. Potulski, "Measurement of the refractive index of air and comparison with modified Edlen's formulae," Metrologia, Vol. 35, 133-139, 1998.
doi:10.1088/0026-1394/35/2/8

17. http://www.ecmwf.int/.

18. Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and P. Shettle, "AFGL atmospheric constituent profiles (0.120 km)," Environm. Res. Papers, No. 954, AFGL-TR-86-0110, Optical Physics Div., Air Force Geophys. Lab., Hanscom AFB, MA, USA, May 1986.

19. Schweitzer, S., G. Kirchengast, and V. Proschek, "Atmospheric influences on infrared-laser signals used for occultation measurements between low earth orbit satellites," Atmos. Measure. Tech. Dis., Vol. 4, No. 3, 2689-2747, Oct. 2011.
doi:10.5194/amtd-4-2689-2011

20. Jacobson, M. Z., Fundamentals of Atmospheric Modeling, Cambridge Univ. Press, 2005.
doi:10.1017/CBO9781139165389

21. Rothman, L. S., I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, and L. R. Brown, "The HITRAN2012 molecular spectroscopic database," J. Quantitative Spectroscopy Radiative Transfer, Vol. 130, 4-50, 2013.
doi:10.1016/j.jqsrt.2013.07.002

22. Ortabasi, U. and H. Friedman, "Powersphere: A photovoltaic cavity converter for wireless power transmission using high power lasers," IEEE World Conf. Photovolt. Energy Conv., Vol. 1, 126-129, 2006.

23. Summerer, L. and O. Purcell, "Concepts for wireless energy transmission via laser," Euro. Space Agency (ESA)-Adv. Concepts Team, 2008.

24. Steinkopf, R., A. Gebhardt, S. Scheiding, et al. "Metal mirrors with excellent figure and roughness," Int. Soc. Opt. Photon., Vol. 71020C, 1-20, 2008.

25. Yang, S.-H. and J.-F. Kiang, "Optimization of sparse linear arrays using harmony search algorithms," IEEE Trans. Antennas Propagat., Vol. 63, No. 11, 4732-4738, Nov. 2015.
doi:10.1109/TAP.2015.2476518

26. Ratnaweera, A., S. Halgamuge, and H. C. Watson, "Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients," IEEE Trans. Evolutionary Comput., Vol. 8, No. 3, 240-255, Jun. 2004.
doi:10.1109/TEVC.2004.826071

27. Jensen, A. S., M. S. Lohmann, H. H. Benzon, and A. S. Nielsen, "Full spectrum inversion of radio occultation signals," Radio Science, Vol. 38, No. 3, 6-1-15, May 2003.
doi:10.1029/2002RS002763

28. Salby, M. L., Fundamentals of Atmospheric Physics, Academic Press, 1996.