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ABSTRACT:Although initial results for the digital implementation of non-Foster impedances showed promise for increasing the bandwidth
of electrically small antennas beyond the Chu limit, earlier approximate design methods were inadequate to fully describe the complexity
of digital impedance circuits. Recently, the input impedance of such digital impedance circuits was discovered to be dependent on
the external source impedance of the driving source. Furthermore, this dependence on the driving source impedance was shown to be
extraordinarily complicated, even for a purely resistive driving source. Consequently, the digital non-Foster impedance match of an
antenna is considerably more complicated, even with a lumped-element antenna model. In this paper, we present a method for designing
a stable wideband digital non-Foster circuit to match the impedance of an electrically small dipole antenna. Simulation results confirm the
theoretical predictions and efficacy of the design method in producing VSWR bandwidth beyond the Wheeler-Chu limit. An RLC model
of a 10MHz electrically small dipole with Q of 215 and passive-tuned bandwidth of 46.5 kHz is chosen to demonstrate the proposed
method. For this antenna with Wheeler-Chu bandwidth limit of 442 kHz and size parameter ka = 0.42 rad, the proposed method results in
achieving an impedance bandwidth of 2.3MHz, or more than five times theWheeler-Chu limit and 48 times the passive-tuned bandwidth.
Lastly, the mid-band noise figure is 12.7 dB when the proposed design is combined with a receiver having 3 dB noise figure.

1. INTRODUCTION

The design of an electrically small antenna (ESA) with band-
width greater than theWheeler-Chu limit remains an area of

active research [1, 2]. In a wide-ranging survey, the Wheeler-
Chu bandwidth limit was confirmed for over 100 passive ESA
designs [3]. In a more recent survey of ESAs at low frequency,
active non-Foster ESA designs were noted to provide band-
width greater than the Wheeler-Chu limit, while passive ESA
designs were constrained by the Wheeler-Chu limit [4]. These
earlier wideband ESA designs used non-Foster devices such as
negative capacitors or negative inductors, implemented by a va-
riety of analog circuits including negative impedance convert-
ers and current conveyors [5–10]. Examples of analog non-
Foster ESA designs with bandwidth greater than the Wheeler-
Chu limit include a 403–419MHz near-field resonant parasitic
ESA [11], a 26–89MHz monopole transmitting ESA [12], a
40MHz resonant antenna with tripled bandwidth [13], a 30–
135MHz high-power ESA [14], a 29–39MHz self-oscillating
ESA [15], a 30–200MHz monopole ESA [16], a resonant
printed monopole ESA with quintupled bandwidth [17], and an
acoustic piezoelectric transducer [18]. Other alternatives, such
as time-varying systems, are also making inroads to increas-
ing bandwidth [19–21]. A receiver bandwidth of 10MHz was
obtained for a 93mm loop antenna at 100MHz by using Bode-
Fano mismatch combined with a low-noise pumped-varactor
parametric amplifier [21–24]. Notwithstanding such success-
ful efforts to exceed the Wheeler-Chu bandwidth limit by uti-
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lizing analog non-Foster circuits, design challenges remain in
areas such asmaintaining stability with system variations due to
component tolerances and due to antenna impedance variations
when objects come into close proximity of the antenna [4, 25–
29].
Digital non-Foster impedance circuits provide an alternative

approach to analog circuit implementations of non-Foster de-
vices such as negative capacitors and negative inductors [30–
33]. One potential advantage of digital non-Foster circuits is
that the Nyquist limit constrains the frequency range of poten-
tial digital feedback instability oscillation to half the sampling
frequency, whereas analog designs can become unstable and
oscillate at frequencies much higher than the operating band.
Other potential advantages include the reduction in compo-
nent variation by using digital circuits, along with the potential
for digital implementation of adaptive stabilization of antenna
impedance variations due to nearby objects. In addition, the
topology of digital non-Foster circuits for ESA enhancement is
similar to modern radio architectures, potentially enabling low-
frequency wireless internet of things devices to take advantage
of the 7.8 dB reduction in the urban Friis-equation propagation
loss each time the frequency is halved [4, 34–36].
Despite early successes [33, 37], prior approximate meth-

ods for designing digital non-Foster circuits seem ineffective in
matching high-Q ESA impedances and in using 50-ohm high-
speed analog-to-digital converters (ADC) and digital-to-analog
converters (DAC). Recently, we discovered that the impedance
of a digital non-Foster circuit is dependent on the impedance
of the external source that is driving the digital non-Foster cir-
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FIGURE 1. Block diagram of a digital impedance circuit driven by an
external voltage source Vs(s) with external source resistance Rs in
series with an antenna defined by its impedance Zant and an optional
tuning inductor Ltune. The digital filter H(z) sets the impedance
at node Vin to Zin(s) = Vin(s)/Iin(s), and time delay τ accounts
for computational latency. Resistor Rio couples the DAC output
impedance Rdac to the ADC input impedance Radc.

cuit [30, 38]. Even in the simple case of a purely resistive
source, this unexpected dependence on the source impedance
results in a complicated expression for the digital non-Foster
circuit impedance [30, 38]. Consequently, this dependence on
the driving source impedance leads to a more complicated digi-
tal impedance design procedure for antennas. Therefore, in this
paper we consider the challenging problem of designing a stable
digital non-Foster circuit for greatly increasing ESA impedance
bandwidth. Our proposed method for designing stable digital
non-Foster ESA matching networks with bandwidth in excess
of the Wheeler-Chu limit builds upon our recent design proce-
dure for digital impedance circuits with resistive sources [30].
In the next section, we develop the theory for determining

digital circuit impedance when the driving source impedance
is a lumped-element model of an ESA. Using this theoretical
foundation, we present a design method for determining digital
filter parameters to achieve an overall stable system that en-
ables ESA bandwidth beyond the Wheeler-Chu limit. Lastly,
we present simulation results for stable digital non-Foster ESA
designs using our design method that have bandwidths surpass-
ing the Wheeler-Chu limit.

2. THEORETICAL ANALYSIS
To begin, consider the digital impedance circuit of Fig. 1 that
is analyzed by using the block diagram of Fig. 2. In transmitter
mode, the voltage source Vs(s)with source resistanceRs in the
dashed box of Fig. 1 drives the antenna impedance Zant(s) in
series with an optional tuning inductorLtune. In receivermode,
the antenna acts as the signal source, and Rs would represent
the receiver input impedance. For the analysis, the source and
antenna impedance are combined and treated as an effective
source impedance Zs(s) = Rs + Zant(s) + sLtune in the
dashed box on the left side of Fig. 2. The digital impedance cir-
cuit with input voltage Vin(s) and input current Iin(s) is shown
in the dashed box on the right of both figures. In Fig. 2, V ⋆

in(s)

FIGURE 2. Analysis block diagram of the system in Fig. 1, showing the
effective source impedance Zs(s) = Rs +Zant(s)+ sLtune driving
the digital impedance circuit. The ADC ismodeled as a sampler whose
output V ⋆

in(s) is the starred transform of Vin(s), and the DAC output
is modeled as the output of the ZOH (1 − z−1)/s, with time delay τ
representing computational latency.

is the starred transform1 of Vin(s) [39]. The ADC of Fig. 1 is
modeled by the ideal sampler with sampling period T in Fig. 2,
with the sampler output V ⋆

in(s) being the input to the digital
filter H(z). The DAC output is modeled by passing the digi-
tal filter output through the zero-order hold (ZOH) with transfer
function (1−z−1)/s. The ZOH output in Fig. 2 passes through
time delay e−sτ which models any latency due to digital filter
computation. The ADC input impedance isRadc; the DAC out-
put impedance is Rdac; and Rio couples the DAC output to the
ADC input.
The input voltage Vin(s) is given by [38]:

Vin(s) =

Vs(s)
Zs(s)

+
V ⋆
in(s)e

−sτH(z)(1−z−1)/s
Rio+Rdac

Zs(s)+Re

Zs(s)Re

∣∣∣∣∣∣
z=esT

, (1)

whereT is the sampling period of the ADC andDAC, andRe =
Radc(Rdac+Rio)/(Radc+Rdac+Rio) is the resistance of the
parallel combination of Radc with Rdac + Rio. Applying the
starred transform [39] to both sides of (1) gives

V ⋆
in(s)=

(
ReVs(s)

Re+Zs(s)

)⋆

+
ReV

⋆
in(s)H(z)(1−z−1)K(z)

Rio +Rdac

∣∣∣∣
z=esT

,

(2)

where K(z) is defined as the modified z-transform2 [39] of
K(s) = Zs(s)e

−sτs−1(Re + Zs(s))
−1.

To prevent aliasing, the input Vs(s) is bandlimited, ensur-
ing that input Vs(s) = 0 for continuous-time angular frequen-
cies ω > π/T . Therefore, (ReVs(s)) / (Re + Zs(s)) = 0

1 The starred transform is used in digital control theory to analyze systems
that include a mixture of analog circuits and digital circuits. In the time domain,
the starred transform v⋆(t) of a continuous-time signal v(t) is equivalent to
multiplying the signal by a periodic Dirac impulse train. In the Laplace domain,
the starred transform is the Laplace transform of v⋆(t).

2 In the analysis of a sampled signal, the modified z-transform is a type
of z-transform that properly accounts for continuous-time delays in a sampled
signal that may be a fraction of a clock period.
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and Re + Zs(s) ̸= 0 for ω > π/T and passive Zs(s) with
Re > 0. Thus, the entire term (ReVs(s)) / (Re + Zs(s)) is
also bandlimited, having a value of zero for ω > π/T . Lastly,
we note that the starred transform of a bandlimited function,
such as F (s), without aliasing equals F (s)/T for frequencies
below half the sampling rate3. Thus, (2) becomes

V ⋆
in(s)≈

Vs(s)L(s)

T
+
ReV

⋆
in(s)H(z)(1−z−1)K(z)

Rio +Rdac

∣∣∣∣
z=esT

ω<π/T

(3)

for frequencies ω < π/T , where L(s) = Re/(Re + Zs(s)).
While (3) may be the most accurate equation for finding a fil-

terH(z) to achieve a desired digital impedance, an approxima-
tion of (3) is used for determining the stability in the z-plane4.
To find this z-domain approximation for ω < π/T , we first
define the bilinear transform5 [40] of L(s) as

L(z) =
Re

Re + Zs(s)

∣∣∣∣
s= 2

T
z−1
z+1

, (4)

noting that a pre-warped bilinear transform can optionally be
used. To determine stability in the z-plane, (3) can then be ap-
proximated by

V ⋆
in(s)≈

Vs(s)L(z)

T
+
ReV

⋆
in(s)H(z)(1−z−1)K(z)

Rio +Rdac

∣∣∣∣
z=esT

ω<π/T

. (5)

Comparing Fig. 1 and Fig. 2, the effective overall source
impedanceZs(s) in Fig. 2 is source resistanceRs in series with
the antenna impedance Zant(s) and the optional tuning induc-
tor Ltune:

Zs(s) = Rs + Zant(s) + sLtune, (6)

where the antenna impedance is

Zant(s) =
1

sC31
+

R31L31s

R31L31C32s2 + L31s+R31
, (7)

with C31, L31, R31, and C32 as specified by the ESA dipole
antenna impedance model in [41]. While more complicated
dipole impedance models exist, the model in (7) suffices for
designing electrically small dipole antennas, particularly where
higher order resonances of the antenna exceed the Nyquist limit
frequency of 0.5/T . Note that the proposed methods are appli-
cable to antenna models having the general form of the second-
order polynomial in (7), and the overall framework of our meth-
ods should be adaptable for other polynomial ESA models.
For the dipole antennamodel in (7), themodified z-transform

K(z) in (3) and (5) is obtained from the partial fraction expan-
sion ofK(s):

K(s) =
Zs(s)e

−sτ

s (Re + Zs(s))
= e−sτ

(
d0

s− s0
+

nmax∑
n=1

dn
s− sn

)
, (8)

3 The starred transform F ⋆(s) can be considered as a periodic extension
of Laplace transform F (s) that repeats at multiples of the sampling frequency
with magnitude scaled by a factor of 1/T .

4 In the z-domain, a system is stable when all poles lie within the unit circle
of the z-plane, |z| < 1.

5 The bilinear transform can be used to convert a stable Laplace-domain
systemH(s) into a corresponding stable discrete-time systemH(z).

where the nmax + 1 poles ofK(s) at sn include a fixed pole at
s0 = 0. The value of nmax is nmax = 4 when a tuning inductor
Ltune ̸= 0 is employed, and nmax = 3 when Ltune = 0. Then,
the corresponding modified z-transform becomes

K(z) = z−λ

(
d0

z − 1
+

nmax∑
n=1

dne
snmT

z − esnT

)
, (9)

wherem and λ are given as

m = 1− τ/T + λ for λ = floor( τ
T ) (10)

where floor(y) is the integer less than or equal to y. The input
current of the digital impedance circuit of Fig. 2 is found by the
voltage difference between the source and the input divided by
the source impedance:

Iin(s) =
Vs(s)− Vin(s)

Zs(s)
. (11)

Using a commercial symbolic solver, we find that the input
impedance of the digital impedance circuit is:

Zin(s) =
Vin(s)

Iin(s)
=

A(s, z)H(z) +B(s, z)

C(s, z)H(z) +D(s, z)

∣∣∣∣
z=esT

, (12)

where

A(s, z) = (Radc (Rdac +Rio) (1− z) (13)
(ReK(z)sTesτ − L(s)Zs(s)))|z=esT

B(s, z) = Radc (Rdac +Rio)
2
zsTesτ

∣∣∣
z=esT

C(s, z) = (Re (Radc +Rdac +Rio) (1− z)K(z)sTesτ

+Radc(Rdac +Rio) (1− z)L(s))|z=esT

D(s, z) =(Radc +Rdac +Rio) (Rdac +Rio) zsTe
sτ |z=esT .

3. DESIGN PROCEDURE
The overall goal is to design a digital filter H(z) in Fig. 1
that produces a desired digital non-Foster circuit impedance
Zin(s) = Vin(s)/Iin(s), providing a stable non-Foster
impedance match to an ESA with a voltage standing wave
ratio (VSWR) bandwidth greater than the Wheeler-Chu limit.
In our experiments with wideband ESA matching, we have
found that a third-orderH(z) usually suffices:

H(z) =
b0z

3 + b1z
2 + b2z + b3

z3 + a1z2 + a2z + a3
, (14)

with seven digital filter parameters b0, b1, b2, b3, a1, a2, a3 to be
determined.
The important question we now address is how to efficiently

search the 7-dimensional parameter space for the parameters
b0, b1, b2, b3, a1, a2, a3 which produce a stable solution, if one
exists. To begin, we derive a system of six linear equations by
choosing three frequencies s1, s2, and s3, and setting the de-
sired goals for the digital impedance to be Zin(s1), Zin(s2),
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and Zin(s3) at those frequencies. For an ESA, the three fre-
quencies chosen to control the digital impedance are typically
the center frequency along with the two edge frequencies of the
operating frequency band. By substituting (14) into (12), and
then rearranging the real and imaginary terms, we get:

Re((C(si, z)Zin(si)−A(si, z))z
3)b0

+Re((C(si, z)Zin(si)−A(si, z))z
2)b1

+Re((C(si, z)Zin(si)−A(si, z))z)b2

+Re(C(si, z)Zin(si)−A(si, z))b3

−Re((B(si, z)−D(si, z)Zin(si))z
2)a1

−Re((B(si, z)−D(si, z)Zin(si))z)a2

−Re(B(si, z)−D(si, z)Zin(si))a3

= Re((B(si, z)−D(si, z)Zin(si))z
3)
∣∣
z=esiT

Im((C(si, z)Zin(si)−A(si, z))z
3)b0

+ Im((C(si, z)Zin(si)−A(si, z))z
2)b1

+ Im((C(si, z)Zin(si)−A(si, z))z)b2

+ Im(C(si, z)Zin(si)−A(si, z))b3

− Im((B(si, z)−D(si, z)Zin(si))z
2)a1

− Im((B(si, z)−D(si, z)Zin(si))z)a2

− Im(B(si, z)−D(si, z)Zin(si))a3

= Im((B(si, z)−D(si, z)Zin(si))z
3)
∣∣
z=esiT

, (15)

for the index i = 1, 2, 3, corresponding to each of the three
chosen design frequencies s1, s2, and s3. This results in an
underdetermined system of six linear equations with seven un-
known variables b0, b1, b2, b3, a1, a2, and a3. Note that if
we chose a form of H(z) with only six parameters, this would
yield a unique solution to (15), but with no guarantee of stabil-
ity. This underdetermined system of linear equations gives us
added flexibility to find a stable solution if one exists.
The flexibility of having an extra degree of freedom from the

seventh parameter allows us to search for a stable solution, as
in [30]. We choose a1 as the free variable to search for digital
filter coefficients that result in a stable system. The motivation
for choosing a1 as our free variable is discussed later, after we
first consider the system stability analysis below.
To determine overall stability, the z-domain transfer function

G(z) of the system is derived from (5), which becomes

Vin(z)≈ Vs(z)L(z)+
ReVin(z)H(z)(1−z−1)K(z)

Rio +Rdac

∣∣∣∣
z=esT

ω<π/T

, (16)

upon substituting V ⋆
in(s) = Vin(z)|z=esT and Vs(s)/T =

Vs(z)|z=esT . Rearranging (16) yields the transfer function
G(z), which determines the overall system poles for stability6:

G(z)=
Vin(z)

Vs(z)
≈ L(z)

1−ReH(z)(1−z−1)K(z)/(Rio+Rdac)
. (17)

6 In digital control theory, stability analysis of a system composed of a mix-
ture of analog and digital circuits is commonly conducted in the z-domain,
where stability is assured when all poles lie within the unit circle of the z-plane.

In (17), observe that the poles of the system include the zeroes
of the denominator of (17) along with the poles of L(z). The
stability of L(z) is evident, since the bilinear transform maps
the stable poles of L(s) to stable poles in L(z). Given Re > 0,
and a passive antenna RLC model Zs(s) = Rs + Zant(s) +
sLtune in (6), and with (7) being a positive real function7, it
follows that L(s) is also a positive real function [42]. With
Re(Re+Zs(jω)) > 0 assuring that L(s) can have no poles on
the jω axis8, then the poles of L(s) are always in the open left
half s-plane, and are therefore always stable.
The remaining system poles are the zeroes of the denomina-

tor in (17), so the system is stable if and only if those zeroes
are inside the unit circle of the z-plane [39]. Rearranging the
denominator of (17), we get

z = ρH(z) (z − 1)K(z), (18)

where ρ = Re/(Rio +Rdac). The roots of (18) are dependent
on our controllable filterH(z), which includes our tunable free
variable a1 that adjusts the system’s overall stability. Care must
also be taken with the cancellation of the z−1 term in (18) and
the z − 1 term in the denominator of at least one of the terms
contained inK(z) in (9).
For practical implementation, the following analysis only

considers delay times between one and two clock cycles, T <
τ < 2T . This affects the modified z-transform of K(z) in
(18) resulting in λ = 1 in (10) and a leading factor of z−1 in
(9). SubstitutingH(z) from (14) into (18) with Ltune > 0 and
nmax = 4 yields the following general constraint equation for a
stable system:

z9 + c8z
8 +

7∑
n=0

cnz
n =

9∏
n=1

(z − zpn) = 0 (19)

for time delay T < τ < 2T , where zpn is the nth pole in the
denominator of (17), and c8 = a1 −

∑nmax
n=1 e

snT . From (18)
and (19) it follows that

|c8| =

∣∣∣∣∣a1 −
nmax∑
n=1

esnT

∣∣∣∣∣ =
∣∣∣∣∣−

9∑
n=1

zpn

∣∣∣∣∣ < 9

=⇒ |a1| < 9 +

∣∣∣∣∣
nmax∑
n=1

esnT

∣∣∣∣∣ < 13 (20)

where |zpn| < 1 for a stable system, and the real partRe{sn} ≤
0 since K(s) is a positive real function as noted later below.
The first inequality in (20) serves as an upper bound for |c8|,
and the second inequality serves as an upper bound for |a1|.

7 Passive RLC circuits with positive-valued elements have positive real
impedance functions. The poles and zeroes of a positive real function Z(s)
are all in the closed left-half Laplace plane, and the real part of a positive real
function Z(s) is greater than or equal to zero when the real part of s is greater
than equal to zero.

8 The real part of Re + Zs(jω) cannot equal zero on the s = jω axis
for Re > 0, since positive real Zs(s) assures that Re(Zs(jω)) ≥ 0. So, it
follows that Re + Zs(jω) cannot equal zero on the s = jω axis since its real
part cannot equal zero.
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The constant c8 is of particular importance since it constrains
the search for stable solutions to a limited range of possible a1
values.
For all poles to be stable, we must have |zpn| < 1 for all

n, and so |
∑9

n=1 zpn| ≤
∑9

n=1|zpn| < 9. Furthermore, with
Zs(s) = Rs+Zant(s)+ sLtune in (6) and (7) being a positive
real function, then K(s) is also a positive real function. This
means that every sn must be a pole in the closed left half s-
plane, and therefore the real part of every snmust be less than or
equal to zero. This condition thus constrains |a1| to be no larger
than 5 + 2nmax for a general nmax and any choice of positive
circuit parameters in Fig. 1. Choosing a1 to be the free variable
has been observed to yield a smaller search range than other
parameters in H(z).
Therefore, the free variable a1 from (14) must be a real

number between −5 − 2nmax < a1 < 5 + 2nmax, if a sta-
ble solution exists. Although a stable system guarantees that
|a1| < 5 + 2nmax, the converse is not true, and a stable sys-
tem may not exist. Nonetheless, this result greatly reduces our
search space by eliminating the need to search a1 values outside
the foregoing range. Note that for each value of a1 in the search,
the remaining six coefficients needed to determineH(z) in (14)
will be given by the straightforward solution of the six linear
equations in (15). If no stable solution is found in the search,
either the number of a1 values within the range |a1| < 5+2nmax
needs to be increased when searching, or a stable solution does
not exist for the system altogether.
In the search process, stability of eachH(z) solution is veri-

fied by determining the roots of (19). According to Abel’s im-
possibility theorem, the nine roots in (19) cannot be found in
closed form for the coefficients c0 − c8. Therefore, an efficient
numerical root finding algorithm is necessary to solve for the
roots in (19) to determine if a stable solution exists for each
a1 value in the search. The computational complexity of the
search space for our proposed design method is O(n) where n
is the number of a1 values to search over. The proposed de-
sign method greatly reduces the search space compared to a
brute force search method with a computational complexity of
O(n7) when considering n search values over each dimension
of the sevenH(z) parameters b0, b1, b2, b3, a1, a2, a3. Similar
to the search in [30], our free variable in the proposed design
method will also have a significantly reduced search space with
|a1| < 5 + 2nmax rather than |a1| < ∞.
Lastly, the target application of the design method is to im-

plement a digital non-Foster impedancematchwith an ESA that
exceeds the Wheeler-Chu bandwidth-efficiency limit [3]:

Bη =
1√

2/(ka) +
√
2/(ka)3

(21)

for a linear polarization dipole antenna, where impedance band-
width is at VSWR = 2; B is the fractional bandwidth; η is the
antenna efficiency; a is the radius of a sphere that would en-
close the antenna; k = ωo/c; and ωo is the operating center
frequency in rad/s. Therefore, it is desirable to choose the edge
frequencies s1 and s3 in (15) to be beyond the Wheeler-Chu
limit, if possible. It is also natural to choose s2 in (15) to be the

center frequency for better control of the impedance between
the two edge frequencies.
In summary, our proposed design method for wideband dig-

ital non-Foster impedance matching of an ESA is to:

• search a1 values over the range |a1| < 5+2nmax, or−9−∣∣∑nmax
n=1 e

snT
∣∣ < a1 < 9 +

∣∣∑nmax
n=1 e

snT
∣∣,

• for each a1 value in the search, solve for the remaining
parameters b0, b1, b2, b3, a2, a3 in H(z) by using the six
linear equations in (15),

• for eachH(z), determine the overall system stability from
the pole locations zpn in (19),

• choose the most stable solution found in the search, such
that max(|zpn|) is minimized.

In the next section, two examples illustrate the foregoing
digital non-Foster impedance design method for an electrically
small dipole antenna, yielding impedance bandwidths greater
than the Wheeler-Chu limit.

4. DESIGN EXAMPLES
Two example designs are used to demonstrate the efficacy of
the proposed design method to significantly increase the band-
width of electrically small dipole antennas. In the examples, the
dipole antenna has a total length of L = 4m, with each dipole
arm of length ha = L/2 = 2m and arm radius ra = ha/50 =
0.04m, and has a nominal fundamental resonant frequency of
approximately 35MHz. This dipole is modeled as an ESA
by using (7) with the following parameters: R31 = 1013Ω,
L31 = 953.1 nH, C31 = 18.92 pF, and C32 = 3.943 pF. At
10MHz, the dipole impedance is Zant(s) = 3.635 − j780.6,
with Q = 215. In each example, the design impedance goals
are heuristic as a demonstration for proof of concept. Since
these heuristic impedance goals are not optimal, future incorpo-
ration of optimization techniques may yield improved results.
The first design example in the schematic of Fig. 3 was sim-

ulated in the Simulink commercial simulator, where source re-
sistance Rs1 corresponds to Rs in Fig. 1 and equals the an-
tenna radiation resistance at the chosen design operating center
frequency f2 = s2/(j2π) = 10MHz as shown in Table 1.
This example also includes an added passive-tuning inductor
Ltune = 12.42µH in Fig. 3 that cancels the capacitive re-
actance of the antenna at the center frequency f2. The digi-
tal non-Foster impedance circuit in Fig. 3 is composed of the
“Zero-Order Hold” block that implements a sampler with sam-
pling period T and drives digital filter H(z), followed by time
delay τ to account for the computational latency. ResistorRadc

is the ADC input resistance;Rdac is the DAC output resistance;
and Rio couples the DAC output to the ADC input. The ideal
voltage source measurement in Fig. 3 is shown as “Vs,” and
the current measurement at the source is shown as “Iin.” In
the time domain simulations of the examples that follow, the
source excitation was a narrow pulse, and the circuit responses
were observed to decay in a stable manner, confirming stabil-
ity of the designs. Thus, the impedance seen by the voltage
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FIGURE 3. Simulink schematic excerpt of the first example, where source resistance Rs1 = 3.635 equals the antenna radiation resistance at center
frequency f2 = 10MHz given in Table 1. The antenna model is comprised of C31 = 18.92 pF, L31 = 953.1 nH, R31 = 1013 Ω, and C32 =
3.943 pF. The digital impedance circuit has a T = 25 ns sampler in the “Zero-Order Hold” block. The sampler is followed by digital filter H(z)
given in Table 1, and a latency time delay of 3T/2 = 37.5 ns is included. The ADC input and DAC output impedances areRadc = Rdac = 30 kΩ,
and are coupled through feedback resistor Rio = 30 kΩ. Antenna tuning inductor Ltune = 12.42µH cancels the capacitive antenna reactance at
center frequency f2.

source “Controlled Voltage Source 1” is computed in the sim-
ulation as the ratio of the fast Fourier transforms (FFTs) of the
two time-domain measurements, “FFT(Vs)/FFT(Iin).” Further
details can be found in the dataset for all examples in [43], with
encryption password aa4488gg.
The digital filter H(z) in Table 1 and Fig. 3 is computed

using the proposed design method, given the design goals in
Table 1 for the non-Foster impedance Zin(s1), Zin(s2), and
Zin(s3) at the three design frequencies f1, f2, and f3. As
can be seen in Table 1, the goals for Zin(s) approximately
cancel the reactance of the passively-tuned antenna including
Ltune, with a residual small resistance and a residual small
reactance with positive slope. In addition, the correspond-
ing design goal and simulation result for the total impedance
Ztot(s) = Zin(s) + Zant(s) + sLtune are also given in Ta-
ble 1 at the three design frequencies. The digital filter design
H(z) achieves the specified impedance targets Ztot(s) at the
three design frequencies, effectively neutralizing most of the
antenna reactance. Simulation results in Table 1 confirm the
design’s effectiveness, achieving near-target design goals at the
specified frequencies.
In the top plot of Fig. 4 for this first example, simulation

results for Ztot(s) = Zant(s) + sLtune(s) + Zin(s) are plot-
ted as the solid curves, along with ×’s showing the theoretical
Ztot(s). The solid red curve shows the real part Re[Ztot(s)],
and the solid blue curve shows the imaginary part Im[Ztot(s)].
The real and imaginary parts of a passively-tuned antenna us-
ing Ltune are shown in the dashed magenta and dashed cyan

curves, respectively. Both the real and imaginary parts of the
simulated Ztot(s) closely match the theoretical Ztot(s) in the
top plot of Fig. 4.
As shown in the middle plot of Fig. 4, the VSWR = 2

bandwidth of the simulation was 2.30MHz centered around
9.9MHz. The Wheeler-Chu bandwidth-efficiency product
from (21) is Bη = 0.0442, or approximately 440 kHz at
a center frequency of 10MHz with ka = 0.42 rad. This
first example demonstrates the design’s effectiveness in
increasing the bandwidth to approximately 2.3/0.442 = 5.2
times the Wheeler-Chu limit for η = 1 (or 4.15 if we let
η ≈ 3.63/4.57 = 0.795 attributable to the added 0.93Ω in
Zin(s2) at f2 as indicated in Table 1). The 2.3MHz bandwidth
is 48.9 times the theoretical passive-tuned antenna bandwidth
of approximately 10/Q = 10/215MHz or 47 kHz in the dashed
cyan curve, which is too narrow to be observed in the middle
plot.
The bottom plot of Fig. 4 displays the simulated noise figure

as a solid blue curve, along with ×’s showing the theoretical
noise figure. The dashed cyan curve shows theoretical noise
figure of a passively-tuned antenna using Ltune. The noise fig-
ure is also noted in Table 1 at design frequencies f1, f2, and f3.
The noise figure NF is calculated from the simulation as:

NF = 10 log10
(
e2ant +

∑
e2n

e2ant

)
, (22)

where
∑

e2n represents the total sum of squared noise voltages
referred back to the input node betweenRs1 and C31 of Fig. 4,
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TABLE 1. Design 1 results (including Ltune = 12.42µH).

Parameter Design Goal Simulation Result

Design H(z) −4623.02z3−4069.63z2−201.519z−30.7068
z3−0.31z2+41.0114z+65.363

T (nS) 25 N/A

τ (nS) 37.5 N/A

Radc=Rdac=Rio (ohms) 30,000 N/A

f1, f2, f3 (MHz) 9.0, 10.0, 11.0 N/A

Zin(s1) (ohms) 0.1− 0.5j
[
Re
(
Zant(s1)

)
−Rs + 0.1

]
− jIm

(
Zant(s1)

)
− j2πf1Ltune ≈ 0.1 + j176.4227 N/A

Zin(s2) (ohms) 0.9− jIm
(
Zant(s2)

)
− j2πf2Ltune ≈ 0.93 + j0.2591 N/A

Zin(s3) (ohms) 0.1 + 0.5j
[
Re
(
Zant(s3)

)
−Rs + 0.1

]
− jIm

(
Zant(s3)

)
− j2πf3Ltune ≈ 0.1− j158.2057 N/A

Ztot(s1) (ohms) 3.03− j1.515 3.03− j1.51

Ztot(s2) (ohms) 4.56 + j0 4.57 + j0

Ztot(s3) (ohms) 4.52 + j2.26 4.52 + j2.26

Observed VSWR = 2 Bandwidth (MHz) 2.30

Theoretical Wheeler-Chu Bandwidth @ ka = 0.42 (MHz) 0.442

Observed Noise Figure (dB) @f1,@f2,@f3 14.1, 12.7, 12.3

Maximum G(z) System Pole Magnitude 0.9997

and e2ant is the 290◦K antenna radiation resistance noise re-
ferred back to the input node. The en noise voltages include the
input-referred Johnson noise voltages of 0.13

√
R nV/

√
Hz due

to Rs, Radc, Rdac, and Rio, plus an input-referred ADC noise
voltage of 1 nV/

√
Hz and an input-referred ADC noise due to

a noise current of 2 pA/
√
Hz. The input-referred ADC noise

voltage and noise current are based on an LTC6226 preamplifier
for the ADC [44]. In computing noise figure as a radio receiver,
Rs becomes the input impedance of the receiver, and the inclu-
sion of the 290◦K Johnson noise voltage of 0.13

√
Rs nV/

√
Hz

for Rs is equivalent to assuming a receiver noise figure of
10 log10(1 + Te/290) = 3 dB [45].
In Table 1, the simulation results for the total tuned

impedance Ztot(s) nearly equal the design goals at the
three design frequencies. The plot of Ztot(s) and VSWR in
Fig. 4 show that Ztot(s) closely equals the antenna radiation
resistance near 10MHz, with a reactance magnitude less
than the radiation resistance. (Note that the real part of the
passive-matched antenna impedance denoted Re(Zpas) in
Fig. 4 equals the antenna radiation resistance.) The simulation
results in the solid curves of Fig. 4 closely match the theoretical
results indicated by the ×’s in Fig. 4. Therefore, the proposed

design method successfully achieves stable digital non-Foster
impedance compensation for an ESA, with impedance band-
width surpassing the Wheeler-Chu limit, and with simulation
results that align well with theoretical predictions.
The second design example is the same as the first exam-

ple in Fig. 3, except that the passive-tuning inductor is effec-
tively removed by setting Ltune = 0. In this second exam-
ple, the total impedance as seen by the voltage source is now
Ztot(s) = Zant(s) + Zin(s). As before, source resistance
Rs1 = 3.635 corresponds to Rs in Fig. 1 and equals the an-
tenna radiation resistance at frequency s2. The antenna is again
modeled by R31, L31, C31, and C32, but the passive-tuning in-
ductor is effectively removed by setting Ltune = 0 in Fig. 1
and Fig. 3.
The digital filter H(z) was again determined using the pro-

posed design method, given the design goals for the second ex-
ample given in Table 2 for the non-Foster impedance Zin(s)
at the three design frequencies f1, f2, and f3. The goals for
Zin(s) approximately cancel the reactance of the antenna alone
(since Ltune = 0), with a residual small resistance and a resid-
ual small reactance with positive slope. The corresponding
Ztot(s) = Zin(s) + Zant(s) are also given in Table 2 for the
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FIGURE 4. Simulation results for the design in Fig. 3 incorporating tun-
ing inductor Ltune. (a) In the top plot, the solid curves show the real
part Re[Ztot(s)] in red and imaginary part Im[Ztot(s)] in blue, where
Ztot(s) = Zant(s) + sLtune(s) + Zin(s). Theoretical values for
Re[Ztot(s)] and Im[Ztot(s)] are shown by ×’s. The real and imagi-
nary parts of the passively-tuned antenna using Ltune alone are shown
in dashed magenta for Re(Zpas) and dashed cyan for Im(Zpas), also
noting thatRe(Zpas) equals the antenna radiation resistance. (b) In the
middle plot, the solid blue curve shows simulatedVSWRcorresponding
toZtot(s), with theoretical VSWR shown by×’s, and where VSWR=1
corresponds to an impedance equal to Rs of Fig. 1. The VSWR band-
width of the passive-tuned antenna in the dashed cyan curve is too nar-
row to be resolved here. (c) In the bottom plot, the solid blue curve
shows simulated noise figure assumingRs of Fig. 1 in receiver mode is
a 3 dB noise figure receiver, with theoretical values shown by×’s. The
dashed cyan curve shows the theoretical noise figure of the passively-
tuned antenna.

FIGURE 5. Simulation results for the design in Fig. 3, effectively remov-
ing the tuning inductor, by setting Ltune = 0. (a) In the top plot, the
solid curves show the real part Re[Ztot(s)] in red and imaginary part
Im[Ztot(s)] in blue, where Ztot(s) = Zant(s) + Zin(s). Theoreti-
cal values forRe[Ztot(s)] and Im[Ztot(s)] are shown by×’s. The real
and imaginary parts of the 12.42µHpassively-tuned antenna are shown
in dashed magenta for Re(Zpas) and dashed cyan for Im(Zpas), also
noting thatRe(Zpas) equals the antenna radiation resistance. (b) In the
middle plot, the solid blue curve shows simulatedVSWRcorresponding
toZtot(s), with theoretical VSWR shown by×’s, andwhereVSWR=1
corresponds to an impedance equal to Rs of Fig. 1. The VSWR band-
width of the passive-tuned antenna in the dashed cyan curve is too nar-
row to be resolved here. (c) In the bottom plot, the solid blue curve
shows simulated noise figure assumingRs of Fig. 1 in receiver mode is
a 3 dB noise figure receiver, with theoretical values shown by×’s. The
dashed cyan curve shows the theoretical noise figure of the passively-
tuned antenna.

three design frequencies. For this second example, the new dig-
ital filter designH(z) is provided in Table 2 using our proposed
design method, and is incorporated inH(z) of Fig. 3.
In the top plot of Fig. 5, simulation results for Ztot(s) =

Zant(s) + Zin(s) are plotted as the solid curves, along with
×’s showing the theoretical Ztot(s). The solid red curve shows
the real part Re[Ztot(s)], and the solid blue curve shows the
imaginary part Im[Ztot(s)]. The real and imaginary parts of
a 12.42µH passively-tuned antenna are shown in the dashed
magenta and dashed cyan curves, respectively. Both the real
and imaginary parts of the simulated Ztot(s) closely match the
theoretical Ztot(s) in the top plot of Fig. 5.
As shown in the middle plot of Fig. 5, the VSWR = 2 band-

width of the simulation was 2.3MHz centered around 9.9MHz.
The Wheeler-Chu bandwidth-efficiency product from (21)
for a center frequency of 10MHz with ka = 0.42 rad is
Bη = 0.0442 or approximately 440 kHz. This second example
demonstrates the design’s effectiveness in increasing the band-
width to approximately 2.3/0.442 = 5.2 times theWheeler-Chu
limit for η = 1 (or 4.2 if we let η ≈ 3.63/4.54 = 0.8 due to the

added 0.9Ω in Zin(s2) at f2 as noted in Table 2). The 2.3MHz
bandwidth is again 48.9 times the theoretical passive-tuned
antenna bandwidth.
The simulated noise figure is shown as the solid blue curve

in the bottom plot of Fig. 5, with ×’s showing the theoretical
noise figure. The dashed cyan curve shows the theoretical noise
figure of a 12.42µH passively-tuned antenna. The noise figure
is also noted in Table 2 at design frequencies f1, f2, and f3.
The noise figure NF is calculated from the simulation in the
same manner as the first example. At the mid-band frequency
f2, this second example’s noise figure is approximately 5.5 dB
worse than in the first example.
As seen in Table 2, the simulation results for the total tuned

impedance Ztot(s) nearly equal the design goals at the three
design frequencies. The plots of Ztot(s) and VSWR in Fig. 5
show that Ztot(s) closely equals the antenna radiation resis-
tance denoted asRe(Zpas) near 10MHz, with a reactance mag-
nitude less than the radiation resistance. The simulation results
in the solid curves of Fig. 5 closely match the theoretical results
shown by the ×’s in Fig. 5. Thus, the proposed design method
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TABLE 2. Design 2 results (without Ltune).

Parameter Design Goal Simulation Result

Design H(z) 4889.27z3−4610.91z2+50.0224z−13.856
z3−0.49z2+53.4003z+51.4956

f1, f2, f3 (MHz) 9.0, 10.0, 11.0 N/A

T (nS) 25 N/A

τ (nS) 37.5 N/A

Radc = Rdac = Rio (ohms) 30,000 N/A

Zin(s1) (ohms) 0.1− 0.5j
[
Re
(
Zant(s1)

)
−Rs + 0.1

]
− jIm

(
Zant(s1)

)
≈ 0.1 + j878.7571 N/A

Zin(s2) (ohms) 0.9− jIm
(
Zant(s2)

)
≈ 0.9 + j780.6307 N/A

Zin(s3) (ohms) 0.1 + 0.5j
[
Re
(
Zant(s3)

)
−Rs + 0.1

]
− jIm

(
Zant(s3)

)
≈ 0.1 + j700.2031 N/A

Ztot(s1) (ohms) 3.03− j1.515 3.03− j1.51

Ztot(s2) (ohms) 4.53 + j0 4.54 + j0

Ztot(s3) (ohms) 4.52 + j2.26 4.52 + j2.26

Observed VSWR = 2 Bandwidth (MHz) 2.3

Theoretical Wheeler-Chu Bandwidth @ ka = 0.42 (MHz) 0.442

Observed Noise Figure (dB) @f1,@f2,@f3 19.9, 18.2, 16.7

Maximum G(z) System Pole Magnitude 0.9831

TABLE 3. Comparison with Prior Non-Foster Results

Reference

Chu Limit

Parameter

ka

Theoretical

Chu Limit

Fractional Bandwidth

Observed

Fractional Bandwidth

Ratio of

Observed to

Theoretical

Fig. 4 0.44 0.044 0.23 5.2

Fig. 5 0.44 0.044 0.23 5.2

Ref. [11] 0.39 0.036 0.039 1.1

Ref. [14] 0.27 0.020 1.65 49.7

has again provided stable digital non-Foster impedance com-
pensation of an ESA with bandwidth exceeding the Wheeler-
Chu limit, where the simulation results closely match theory.
Since every simulation was conducted in the time domain

with causal RLC components and causal H(z), frequency-
domain results in Fig. 4 and Fig. 5 must satisfy the Kramers-
Kronig relations. Furthermore, the frequency-domain simula-

tion results in Fig. 4 and Fig. 5 are created from the Fourier
transform of the stable and causal time-domain simulation of
the system.
It is somewhat difficult to compare non-Foster ESA design

results, because the design and geometry of underlying antenna
strongly impacts achieved bandwidth and is often limited by
application constraints. Nevertheless, Table 3 compares the re-
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sults of Fig. 4 and Fig. 5 to results in [11] and [14]. The second
column of the table gives the Wheeler-Chu parameter ka, and
the third column gives the theoretical Wheeler-Chu bandwidth
limit B, assuming efficiency η = 1 and with requisite adjust-
ments to (21) for VSWR from [3]. The third column of the
table gives the observed fractional bandwidth, and the fourth
column gives the improvement ratio of the observed fractional
bandwidth to theoretical fractional bandwidth. The improve-
ment ratio of our proposed method exceeds the results in [11].
The much greater improvement ratio of [14] may be attributed
to the use of a lower-Q large-volume cylindrical slot antenna
instead of a dipole.

5. CONCLUSION
A method for the design of a stable digital non-Foster
impedance match to an electrically small antenna has been
presented. Example designs demonstrated stable digital
non-Foster impedance matching to an electrically small dipole.
The examples achieved VSWR = 2 bandwidths between
4.15 and 5.2 times the theoretical Wheeler-Chu bandwidth
for an electrically small dipole antenna having Q = 215 and
ka = 0.42 rad. The bandwidth is also 48.9 times the theoretical
passive-tuned antenna bandwidth. While the results show that
our method can create designs that exceed the Wheeler-Chu
impedance bandwidth, improvements might be achieved by:

• altering the heuristic choice of design impedance goals,
• using more than three frequencies to solve for digital filter
coefficients,

• increasing the order of H(z),
• increasing the number of free variables allowed in H(z),
• using reactive feedback in place of Rio.

Significantly, both theory and simulation confirm that digi-
tal non-Foster circuits can provide impedance matching band-
width greater than the Wheeler-Chu limit for electrically small
antennas.

DATASET
A dataset for all examples is at [43], with encryption password
aa4488gg.
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