Vol. 100
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-03-05
Propagation Characteristics for UAVs Operating at Short Range and Low Altitude
By
Progress In Electromagnetics Research C, Vol. 100, 105-120, 2020
Abstract
Propagation mechanisms for short range, low altitude conditions are reviewed for their use in communications of unmanned aerial vehicles (UAVs). This study is based on measurements conducted in an obstacle-free area. The testbed is made up of a testing UAV (in particular a drone) and a set of four ground station terminals (GSTs) located in a football field; the antenna heights of radios (onboard the drone and GSTs) are equal to 1.4 m and the maximum distance between them is 50 m. Under these conditions, a plane earth geometry is well suited, and therefore the two-ray propagation model is considered. Measurement results for a radial configuration of the drone with respect to a ground station follow the trend of this model, but with a shift, which is attributed to the scattering from the grass. Then, an adjusted two-ray model is proposed for which experiments report good results. For another configuration where the drone has different positions in a square area of 30 × 30 m and there are four ground stations in the corners of the square, the general trend of the power decay of measurement results follows this model, but in some positions a difference around it is found even for locations at the same distance drone-GTSs. This behavior is attributed to the interaction of the print circuit board to the radiation characteristics of the antenna used in the radios. Thus, this effect is also analyzed by simulations, whose results show a deformation of the antenna radiation pattern, concentrating the energy in a certain direction and reducing it in another.
Citation
Giselle M. Galvan-Tejada, Jorge E. Aviles-Mejia, Aldo G. Orozco-Lugo, Luis A. Arellano-Cruz, Ruben Flores-Leal, and Rogelio Lozano-Leal, "Propagation Characteristics for UAVs Operating at Short Range and Low Altitude," Progress In Electromagnetics Research C, Vol. 100, 105-120, 2020.
doi:10.2528/PIERC19110606
References

1. Li, B., F. Zesong, and Y. Zhang, "UAV communications for 5G and beyond: Recent advances and future trends," IEEE Internet of Things Journal, Vol. 6, No. 2, 2241-2263, April 2019.
doi:10.1109/JIOT.2018.2887086

2. Zeng, Y., Q. Wu, and R. Zhang, "Accessing from the sky: A tutorial on UAV communications for 5G and beyond," Proceedings of the IEEE.

3. Tatar Mamaghani, M. and Y. Hong, "On the performance of low-altitude UAV-enabled secure AF relaying with cooperative jamming and SWIPT," IEEE Access, Vol. 7, 153060-153073, October 2019.

4. Parsons, J. D., The Mobile Radio Propagation Channel, John Wiley & Sons, 1992.

5. Dehghan, S. M. M. and H. Moradi, "A geometrical approach for aerial cooperative obstacle mapping using RSSI observations," RSI/ISM International Conference on Robotics and Mechatronics, 197-202, October 2014.

6. Simunek, M., F. Perez Fontan, and P. Pechac, "The UAV low elevation propagation channel in urban areas: Statistical analysis and time-series generator," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3850-3858, July 2013.
doi:10.1109/TAP.2013.2256098

7. Virone, G., A. M. Lingua, M. Piras, A. Cina, F. Perini, J. Monari, F. Paonessa, O. A. Peverini, G. Addamo, and R. Tascone, "Antenna pattern verification system based on a micro Unmanned Aerial Vehicle (UAV)," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 169-172, 2014.
doi:10.1109/LAWP.2014.2298250

8. Siebert, S. and J. Teizer, "Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system," Automation in Construction, Vol. 41, 1-14, 2014.
doi:10.1016/j.autcon.2014.01.004

9. Sankaran, S., L. R. Khot, C. Zuiga Esponoza, et al. "Low-altitude, high resolution aerial imaging systems for row and field crop phenotyping: A review," European Journal of Agronomy, Vol. 70, 112-123, 2015.
doi:10.1016/j.eja.2015.07.004

10. Motlagh, N. H., T. Taleb, and O. Arouk, "Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives," IEEE Internet of Things Journal, Vol. 3, No. 6, 822-899, December 2016.

11. Koparan, C., A. B. Koc, C. V. Privette, and C. B. Sawyer, "In situ water quality measurements using an Unmanned Aerial Vehicle (UAV) system," Water, Vol. 10, No. 3, 264, 2018.
doi:10.3390/w10030264

12. Qiu, Z., X. Chu, C. Calvo-Ramirez, C. Briso, and X. Yin, "Low altitude UAV air-to-ground channel measurement and modeling in semiurban environments," Wireless Communication and Mobile Computing, Vol. 2017, 1-11, 2017.
doi:10.1155/2017/1587412

13. Green, E. and M. Hata, "Microcellular propagation measurements in an urban environment," IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 324-328, 1991.
doi:10.1109/PIMRC.1991.571510

14. Xia, H. H., H. L. Bertoni, L. R. Maciel, A. Lindsay-Stewart, and R. Rowe, "Radio propagation characteristics for line-of-sight microcellular and personal communications," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 10, 1439-1447, October 1993.
doi:10.1109/8.247785

15. Perera, S. C. M., A. G. Williamson, and G. R. Rowe, "Prediction of breakpoint distance in microcellular environments," Electronics Letters, Vol. 35, No. 14, 1135-1136, July 1999.
doi:10.1049/el:19990834

16. Masui, H., T. Kobayashi, and M. Akaike, "Microwave path-loss modeling in urban line-of-sight environments," IEEE Journal on Selected Areas in Communications, Vol. 20, No. 6, 1151-1155, August 2002.
doi:10.1109/JSAC.2002.801215

17. Jordan, E. C. and K. G. Balman, Electromagnetic Waves and Radiating Systems, 2nd Ed., Prentice-Hall, 1968.

18. McFarlane, D. A. and S. T. S. Chia, "Microcellular mobile radio systems," British Telecom Technology Journal, Vol. 8, No. 1, 79-84, January 1990.

19. Green, E., "Radio link design for microcellular systems," British Telecom Technology Journal, Vol. 8, No. 1, 85-96, January 1990.

20. Xia, H. H., H. L. Bertoni, L. R. Maciel, A. Lindsay-Stewart, and R. Rowe, "Microcellular propagation characteristics for personal communications in urban and suburban environments," IEEE Transactions on Vehicular Technology, Vol. 43, No. 3, 743-752, August 1996.
doi:10.1109/25.312772

21. http://www.taoglas.com/product/gw-59-2-45-8ghz-3dbi-dipole-antenna-rp-smam-hinged/.

22. Feuerstein, M. J., K. L. Blackard, T. S. Rappaport, S. Y. Seidel, and H. H. Xia, "Path loss, delay spread, and outage models as functions of antenna height for microcellular system design," IEEE Transactions on Vehicular Technology, Vol. 43, No. 3, 487-498, August 1994.
doi:10.1109/25.312809

23. Blackard, K. L., M. J. Feuerstein, T. S. Rappaport, S. Y. Seidel, and H. H. Xia, "Path loss and delay spread models as functions of antenna height for microcellular system design," IEEE 42nd Vehicular Technology Conference, 333-337, May 1992.

24. Recommendation ITU-R P.527-4 "Electrical characteristics of the surface of the Earth," International Telecommunication Union, Radiocommunication Sector of ITU, P Series, Radiowave Propagation, 1–19, June 2017.

25. Sjoholm, J. and K. Palmer, Angular momentum of electromagnetic radiation: Fundamental physics applied to the radio domain for innovative studies of space and development of new concepts in wireless communications, Diploma Thesis, Uppsala School of Engineering and Department of Astronomy and Space Physics, Uppsala University, Sweden, 1–186, May 2007.

26. Lymberopoulos, D., Q. Lindsey, and A. Savvides, "An empirical characterization of radio signal strength variability in 3-D IEEE 802.15.4 networks using monopole antennas," European Workshop on Wireless Sensor Networks, 326-341, 2006.
doi:10.1007/11669463_24

27. Galvan-Tejada, G. M., R. Flores-Leal, F. Sanchez-Gomez, and V. Barrera-Figueroa, "On the importance of the vertical radiation pattern on simulations of WSNs," 2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1-6, September 2016.