login
Vol. 100
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-03-11
Efficient Simulation Tool to Characterize the Radar Cross Section of a Pedestrian in Near Field
By
Progress In Electromagnetics Research C, Vol. 100, 145-159, 2020
Abstract
A simulation tool to characterize the radar cross section of a pedestrian in near field is presented in the paper. The tool has been developed in order to predict and optimize the performance of the short-range radar systems employed in autonomous vehicle operations. It is based on an analytical model which joins the modeling of the human body with the theory of the physical optics. Our studies first focused on the implementation of the electromagnetic code where the human body, the radiation properties of the antenna and the scenario to be analyzed have been analytically expressed. Then, the proposed model has been validated in terms of accuracy comparing simulated and experimental data regarding the radar cross section of a metal sphere and of an adult, in the frequency range 23-28 GHz. In the end, an evaluation of the performance in terms of required computer memory and execution time has been carried out, comparing the proposed simulation tool with other numerical computational methods.
Citation
Giovanni Manfredi, Paola Russo, Alfredo De Leo, and Graziano Cerri, "Efficient Simulation Tool to Characterize the Radar Cross Section of a Pedestrian in Near Field," Progress In Electromagnetics Research C, Vol. 100, 145-159, 2020.
doi:10.2528/PIERC19112701
References

1. Fleming, B., "New automotive electronics technologies [automotive electronics]," IEEE Vehicular Technology Magazine, Vol. 7, No. 4, 4-12, 2012.

2. Euro NCAP — Autonomous Emergency Breaking, , https://tinyurl.com/yy2ec6ew, date last accessed 20-Jan.-2020.

3. Langer, D. and T. Jochem, "Fusing radar and vision for detecting, classifying and avoiding roadway obstacles," Proceedings of the 1996 IEEE Intelligent Vehicles Symposium, 1996, 333-338, 1996.

4. Kato, T., Y. Ninomiya, and I. Masaki, "An obstacle detection method by fusion of radar and motion stereo," IEEE Transactions on Intelligent Transportation Systems, Vol. 3, No. 3, 182-188, 2002.

5. Park, M. K., S. Y. Lee, C. K. Kwon, and S. W. Kim, "Design of pedestrian target selection with funnel map for pedestrian AEB system," IEEE Transactions on Vehicular Technology, Vol. 66, No. 5, 3597-3609, 2017.

6. Sakamoto, T., T. Sato, P. J. Aubry, and A. G. Yarovoy, "Texture-based automatic separation of echoes from distributed moving targets in UWB radar signals," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 1, 352-361, 2015.

7. Chang, S., R. Sharan, M. Wolf, N. Mitsumoto, and J. W. Burdick, "UWB radar-based human target tracking," 2009 IEEE Radar Conference, 1-6, 2009.

8. Okumura, S., T. Sato, T. Sakamoto, and T. Sato, "Technique of tracking multiple pedestrians using monostatic ultra-wideband Doppler radar with adaptive Doppler spectrum estimation," 2016 International Symposium on Antennas and Propagation (ISAP), 320-321, 2016.

9. Yamada, N., Y. Tanaka, and K. Nishikawa, "Radar cross section for pedestrian in 76 GHz band," 2005 European Microwave Conference, 4-1018, 2005.

10. Marchetti, E., R. Du, F. Norouzian, E. G. Hoare, T. Y. Tran, M. Cherniakov, and M. Gashinova, "Comparison of pedestrian reflectivities at 24 and 300 GHz," 2017 18th International Radar Symposium (IRS), 1-7, 2017.

11. Chen, M. and C. Chen, "RCS patterns of pedestrians at 76–77 GHz," IEEE Antennas and Propagation Magazine, Vol. 56, No. 4, 252-263, 2014.

12. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Plenum Press, 1970.

13. Knott, E. F., Radar Cross Section Measurements, Springer Science & Business Media, 2012.

. Scattered field of a conducting and stratified sphere, https://it.mathworks.com/matlabcentral/fileexchange/20430-scattered-field-of-a-conducting-and-stratified-spheres, date last accessed 20-Jan.-2020.

15. Fortuny-Guasch, J. and J. M. Chareau, Radar cross section measurements of pedestrian dummies and humans in the 24/77 GHz frequency bands: Establishment of a reference library of RCS signatures of pedestrian dummies in the automotive radar bands, 2013.

16. Le, C. and T. Dogaru, "Numerical modeling of the airborne radar signature of dismount personnel in the UHF-, L-, Ku-, and Ka-bands," Army Research Lab Adelphi MD and Electron Devices Directorate, 2007.

17. Ur-Rehman, M., Q. H. Abbasi, X. Chen, and Z. Ying, "Numerical modelling of human body for Bluetooth body-worn applications," Progress In Electromagnetics Research, Vol. 143, 623-639, 2013.

18. Dogaru, T. and C. Le, "Validation of Xpatch computer models for human body radar signature," Army Research Lab Adelphi MD and Electron Devices Directorate, 2008.

19. Yi, X., G. Feng, Z. Liang, C. Wang, B. Liu, C. Li, K. Yang, C. C. Boon, and Q. Xue, "A 24/77 GHz dual-band receiver for automotive radar applications," IEEE Access, Vol. 7, 48053-48059, 2019.

20. Hamdane, H., T. Serre, C. Masson, and R. Anderson, "Issues and challenges for pedestrian active safety systems based on real world accidents," Accident Analysis & Prevention, Vol. 82, 53-60, , 2015.

21. Chen, M., C. C. Chen, S. Y.-P. Chien, and R. Sherony, "Artificial skin for 76–77 GHz radar mannequins," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5671-5679, 2014.

22. Schwind, A., R. Stephan, and M. A. H. Thuringian, "Simulations and measurements of the bistatic radar cross section of vulnerable road users between 2 GHz and 6 GHz," 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 1-4, 2018.

23. Lee, S., Y. Yoon, J. Lee, and S. Kim, "Human-vehicle classification using feature-based SVM in 77-GHz automotive FMCW radar," IET Radar, Sonar Navigation, Vol. 11, No. 10, 1589-1596, 2017.

24. Poston, A., Human Engineering Design Data Digest: Human Factors Standardization Systems, Human Factors Standardization SubTAG, 2000.

25. 3D CAD Browser, , https://www.3dcadbrowser.com, date last accessed 20-Jan.-2020.

26. REMCOM — VariPose, , https://www.remcom.com/xf-varipose-biological-mesh-repositioning, date last accessed 20-Jan.-2020.

27. MakeHuman — Open Source tool for making 3-D characters, , http://www.makehumancommunity.org, date last accessed 20-Jan.-2020.

28. Basar, M. R., F. Malek, K. M. Juni, M. I. M. Saleh, M. S. Idris, L. Mohamed, N. Saudin, N. A Mohd Affendi, and A. Ali, "The use of a human body model to determine the variation of path losses in the human body channel in wireless capsule endoscopy," Progress In Electromagnetics Research, Vol. 133, 495-513, 2013.

29. Van Dorp, P. and F. C. A. Groen, "Human walking estimation with radar," IEE Proceedings — Radar, Sonar and Navigation, Vol. 150, No. 5, 356-365, 2003.

30. Mohamed, M., M. Cheffena, F. P. Fontan, and A. Moldsvor, "A dynamic channel model for indoor wireless signals: Working around interference caused by moving human bodies," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 82-91, 2018.

31. Autodesk — M Maya, https://www.autodesk.com/products/maya/overview, date last accessed 20-Jan.-2020.

32. Chen, M., M. Kuloglu, and C. Chen, "Numerical study of pedestrian RCS at 76–77 GHz," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1982-1983, 2013.

33. Belgiovane, D., C. Chen, M. Chen, S. Y. Chien, and R. Sherony, "77 GHz radar scattering properties of pedestrians," 2014 IEEE Radar Conference, 0735-0738, 2014.

34. De Leo, A., V. M. Primiani, P. Russo, D. Shahu, V. Di Mattia, and G. Cerri, "Breath detection of humans buried in a homogeneous lossy medium: A simplified analytical model," 2012 International Symposium on Electromagnetic Compatibility (EMC EUROPE), 1-6, 2012.

35. Manfredi, G., V. Di Mattia, P. Russo, A. De Leo, and G. Cerri, "The human body modelled by canonical geometric shapes for the analysis of scattered E-fields," Applied Computational Electromagnetics Society Journal, Vol. 33, No. 7, 741-745, 2018.

36. Tamyis, N. M., D. K. Ghodgaonkar, M. N. Taib, and W. T. Wui, "Dielectric properties of human skin in vivo in the frequency range 20–38 GHz for 42 healthy volunteers," Proceedings of the 28th URSI General Assembly, 23-29, 2005.

37. Istituto di Fisica Appliccata “Nello Carrara” — Dielectric properties of body tissues, , http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php, date last accessed 20-Jan.-2020.

38. Asvestas, J. S., "The physical optics method in electromagnetic scattering," Journal of Mathematical Physics, Vol. 21, No. 2, 290-299, 1980.

39. Akhmanov, S. A. and S. Y. Nikitin, "Physical Optics," Clarendon Press, 1997.

40. Balanis, C. A., Antenna Theory: Antenna and Design, John Wiley & Sons, 2005.

41. Barber, P. W. and C. Yeh, "Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies," Applied Optics, Vol. 14, No. 12, 2864-2872, 1975.

42. Ramo, S., J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, John Wiley & Sons, 2008.

43. Lemmen, P., J. Stoll, U. Bergelt, P. Seiniger, M. Wisch, O. Bartels, E. Schubert, M. Kunert, I. Knight, D. Brookes, et al. "Evaluation of pedestrian targets for use in automomous emergengy brake system testing-a report from the harmonistion platform 2 dealing with test equipment," 23rd Conference on the Enhancement of the Safety of Vehicles (ESV), 2013.