Vol. 146
Latest Volume
All Volumes
PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-07-30
Enhanced Prediction of Metamaterial Antenna Parameters Using Advanced Machine Learning Regression Models
By
Progress In Electromagnetics Research C, Vol. 146, 1-12, 2024
Abstract
The integration of machine learning (ML) regression models in predicting the parameters of metamaterial antennas significantly reduces the design time required for optimizing antenna performance compared to traditional simulation tools. Metamaterial antennas, known for overcoming the bandwidth constraints of small antennas, benefit greatly from these advanced predictive models. This study applies and evaluates four ML regression models - Extra Trees, Random Forest, XGBoost, and CatBoost - to predict key antenna parameters such as S11, gain, and bandwidth. Each model's performance is assessed using metrics like Mean Absolute Error (MAE), Mean Squared Error (MSE), R-squared (R2), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE) across different training and testing set configurations (30%, 50%, and 70%). The Extra Trees model achieves the best performance for predicting gain, with an R2 of 0.9990, MAE of 0.0069, MSE of 0.0002, RMSE of 0.0145, and MAPE of 0.3106. Feature importance analysis reveals that specific features, such as pr and p0 for gain and Ya and Xa for bandwidth, are critical in the predictive models. These findings highlight the potential of ML methods to improve the efficiency and accuracy of metamaterial antenna design.
Citation
Prince Jain, Prabodh Kumar Sahoo, Aymen Dheyaa Khaleel, and Ahmed Jamal Abdullah Al-Gburi, "Enhanced Prediction of Metamaterial Antenna Parameters Using Advanced Machine Learning Regression Models," Progress In Electromagnetics Research C, Vol. 146, 1-12, 2024.
doi:10.2528/PIERC24060901
References

1. Hong, Tao, Cong Liu, and Michel Kadoch, "Machine learning based antenna design for physical layer security in ambient backscatter communications," Wireless Communications and Mobile Computing, Vol. 2019, No. 1, 4870656, 2019.

2. Zhang, J., J. Xu, Q. Chen, and H. Li, "Machine-learning-assisted antenna optimization with data augmentation," IEEE Antennas Wirel. Propag. Lett., Vol. 22, No. 8, 1932-1936, 2023.

3. Li, W. T., H. S. Tang, C. Cui, Y. Q. Hei, and X. W. Shi, "Efficient online data-driven enhanced-XGBoost method for antenna optimization," IEEE Trans. Antennas Propag., Vol. 70, No. 7, 4953-4964, 2022.

4. Verma, Ramesh Kumar and D. K. Srivastava, "Bandwidth enhancement of a slot loaded T-shape patch antenna," Journal of Computational Electronics, Vol. 18, 205-210, 2019.

5. Kumar, Arun and Manish Kumar Singh, "Band-notched planar UWB microstrip antenna with T-shaped slot," Radioelectronics and Communications Systems, Vol. 61, No. 8, 371-376, 2018.

6. Geetharamani, G. and T. Aathmanesan, "Design of metamaterial antenna for 2.4 GHz WiFi applications," Wireless Personal Communications, Vol. 113, 2289-2300, 2020.

7. Yan, Sen, Ping Jack Soh, and Guy A. E. Vandenbosch, "Compact all-textile dual-band antenna loaded with metamaterial-inspired structure," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1486-1489, 2014.

8. Rawal, Kuntesh, Patel Dixita Devendrabhai, Pratik Pataniya, Prince Jain, Anand Joshi, G. K. Solanki, and Mohit Tannarana, "Versatile photo-sensing ability of paper based flexible 2D-Sb0. 3Sn0. 7Se2 photodetector and performance prediction with machine learning algorithm," Optical Materials, Vol. 152, 115547, 2024.

9. Watpade, Atul D., Sanketsinh Thakor, Prince Jain, Prajna P. Mohapatra, Chandan R. Vaja, Anand Joshi, Dimple V. Shah, and Mohammad Tariqul Islam, "Comparative analysis of machine learning models for predicting dielectric properties in MoS2 nanofiller-reinforced epoxy composites," Ain Shams Engineering Journal, Vol. 15, No. 6, 102754, 2024.

10. Jain, Prince, Ayanesh Joshi, and Anand Joshi, "Assessing the efficacy of machine learning models in hydroxyapatite nano-powder assisted electro discharge machining of Ti-6Al-4 V Grade-5 alloy," International Journal on Interactive Design and Manufacturing (IJIDeM), 1-9, 2024.

11. Song, Kai, Feng Yan, Ting Ding, Liang Gao, and Songbao Lu, "A steel property optimization model based on the XGBoost algorithm and improved PSO," Computational Materials Science, Vol. 174, 109472, 2020.

12. Watpade, Atul D., Sanketsinh Thakor, Poonam Sharma, Dimple V. Shah, Chandan R. Vaja, and Prince Jain, "Synthesis, characterization, and dielectric spectroscopy of TiO2 and ZnO nanoparticle-reinforced epoxy composites," Journal of Materials Science: Materials in Electronics, Vol. 35, No. 7, 466, 2024.

13. Paulson, G., K. Upadhyay, P. Dighe, S. Pathan, and Tanweer, "Regression analysis of metamaterial antenna using decision and extra tree regressors," Proceedings of the 2023 International Conference on Modeling, Simulation & Intelligent Computing (MoSICom), 313-316, Dubai, United Arab Emirates, 2023.

14. Machado, R., Metamaterial Antennas, Available: https://www.kaggle.com/renanmav/metamaterial-antennas, 2019.

15. Kurniawati, N., D. N. N. Putri, and Y. K. Ningsih, "Random forest regression for predicting metamaterial antenna parameters," Proceedings of the 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE), 174-178, Lombok, Indonesia, 2020.

16. Shingala, Bansi, Piyushkumar Panchal, Sanketsinh Thakor, Prince Jain, Anand Joshi, Chandan R. Vaja, R. K. Siddharth, and V. A. Rana, "Random forest regression analysis for estimating dielectric properties in epoxy composites doped with hybrid nano fillers," Journal of Macromolecular Science, Part B, 1-15, 2024.

17. Jain, Prince, Jammisetty Yedukondalu, Himanshu Chhabra, Urvashi Chauhan, and Lakhan Dev Sharma, "EEG-based detection of cognitive load using VMD and LightGBM classifier," International Journal of Machine Learning and Cybernetics, 1-18, 2024.

18. Dhananjay, B. and J. Sivaraman, "Analysis and classification of heart rate using CatBoost feature ranking model," Biomedical Signal Processing and Control, Vol. 68, 102610, 2021.

19. Abdelhamid, Abdelaziz A. and Sultan R. Alotaibi, "Optimized two-level ensemble model for predicting the parameters of metamaterial antenna," Computers, Materials & Continua, Vol. 73, No. 1, 917-933, 2022.

20. El-kenawy, E. M., Abdelhameed Ibrahim, Seyedali Mirjalili, Y. Zhang, Shaima Elnazer, and Rokaia M. Zaki, "Optimized ensemble algorithm for predicting metamaterial antenna parameters," Computers, Materials & Continua, Vol. 71, No. 3, 4989-5003, 2022.