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ABSTRACT: The integration of machine learning (ML) regression models in predicting the parameters of metamaterial antennas signif-
icantly reduces the design time required for optimizing antenna performance compared to traditional simulation tools. Metamaterial
antennas, known for overcoming the bandwidth constraints of small antennas, benefit greatly from these advanced predictive models.
This study applies and evaluates four ML regression models — Extra Trees, Random Forest, XGBoost, and CatBoost — to predict key
antenna parameters such as S11, gain, and bandwidth. Each model’s performance is assessed using metrics like Mean Absolute Error
(MAE), Mean Squared Error (MSE),R-squared (R2), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE)
across different training and testing set configurations (30%, 50%, and 70%). The Extra Trees model achieves the best performance for
predicting gain, with an R2 of 0.9990, MAE of 0.0069, MSE of 0.0002, RMSE of 0.0145, and MAPE of 0.3106. Feature importance
analysis reveals that specific features, such as pr and p0 for gain and Y a and Xa for bandwidth, are critical in the predictive models.
These findings highlight the potential of ML methods to improve the efficiency and accuracy of metamaterial antenna design.

1. INTRODUCTION

As wireless communication systems continue to advance, the
demand for low-profile and compact antennas with high

gain and wide frequency bands grows. Microstrip patch an-
tennas have emerged as a solution, offering compactness, low
profile, and light weight. Despite their advantages, these de-
signs suffer from low efficiency, low gain, and narrow band-
width, which recent developments in machine learning (ML)
are addressing [1, 2]. Researchers are investigating methods
to enhance bandwidth by modifying the dimensions and con-
figuration of the radiating patch and decreasing the substrate’s
dielectric constant. Integrating notches and slots into the patch
design can also improve radiation and overall performance [3].
The bandwidth of patch antennas is closely related to their size,
posing a significant challenge: maintaining performance while
reducing size. Researchers have attempted to keep the permit-
tivity of the antenna high while decreasing size through the use
of dielectric substrates. Additionally, modifying the antenna’s
shape to extend the electrical path length of the patch can in-
crease bandwidth [4]. Adjusting the location of notches and uti-
lizing slits and slots further reduces antenna size and improves
performance.
The advancement of antennas through computational elec-

tromagnetics (EM) can be improved by utilizing ML methods

* Corresponding author: Ahmed Jamal Abdullah Al-Gburi (ahmedjamal@
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to harness their inherent nonlinearities. ML’s strength lies in its
ability to extract meaningful information from data, making it
closely related to statistics and data science. ML can build au-
tonomous systems that match and exceed human capabilities,
driven by data. However, the absence of a standardized dataset
with antenna design parameters presents a challenge for ma-
chine learning engineers. Simulation software can be used to
generate extensive datasets for training ML models. Designing
EM devices, such as microstrip antennas, presents two primary
challenges: the complexity of multi-physics analysis and the
significant computational resources required. Finite element
analysis (FEA) is often used but requires significant computa-
tional resources and time. ML models can predict design pa-
rameters more efficiently, especially non-parametric models,
which are better suited for the highly nonlinear nature of elec-
tromagnetic devices [5].
Metamaterials, with their unique properties not found in nat-

ural materials, are widely used in various fields, including an-
tenna design [6, 7]. These materials enable the creation of an-
tennas with innovative features, such as increased bandwidth
and gain, reduced electrical size, and improved signal direc-
tionality. Metamaterials can serve as substrates or be integrated
into antenna designs to enhance performance. Simulation soft-
ware, such as HFSS and CST Microwave Studio, are typically
used to estimate metamaterial effects, but this process can be
time-consuming. ML models can expedite the design process,
reducing errors, maintaining high accuracy, saving time, and
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TABLE 1. Descriptive statistics of features in the metamaterial antenna dataset, including minimum, maximum, mean, and standard deviation values
for each feature.

Feature Description Maximum Value Minimum Value Mean Standard Deviation
1 Wm SRR width and height 6964.3 2142.9 2227.49 632.98
2 W0m Gap between rings 651.43 162.86 401.43 184.53
3 Dm Distance between rings 488.57 77.143 275.64 150.77
4 Tm Width of rings 696.43 214.29 222.75 63.30
5 SRR_num Number of SRR cells 7 3 4.10 1.44
6 Xa Distance between antenna patch and array 10776.0 0.0 4077.50 3281.90
7 Y a Distance between SRR cells 16607.0 2142.9 6964.33 5132.79
8 rows Number of SRR cells in a array 7 3 4.10 1.44
9 pr Power radiated by antenna 0.22953846 0.05481 0.19342 0.04613
10 p0 Power accepted by antenna 0.49982594 0.18629 0.45745 0.08890
11 Gain Gain 3.2385 1.1987 2.7075 0.4765
12 Bandwidth Bandwidth 124.7401 62.16 118.3604 10.34
13 S11 Return loss −2.0834 −33.9031 −16.15 7.87

improving computational efficiency. Numerous studies have
validated the potential of ML models in various applications.
For instance, Rawal et al. highlighted the efficacy of ML mod-
els, particularly the k-nearest neighbor algorithm, in optimiz-
ing the performance of flexible photodetectors [8]. Watpade et
al. demonstrated the use of ML models, such as random for-
est, extra trees, decision trees, gradient boosting, and XGBoost,
in predicting the dielectric constants of nano epoxy compos-
ites [9]. Jain et al. showed the effectiveness of ML models
in predicting the performance features of EDM of Ti-6Al-4 V
Grade-5 alloy [10]. Other studies have confirmed the accuracy
and efficiency of ML models, such as XGBoost, in predicting
the dielectric properties of epoxy polymer composites with var-
ious nano fillers [11–13].
This study investigates the application of four popular ma-

chine learning regression models — Extra Trees, Random For-
est, XGBoost, and CatBoost — to predict critical antenna pa-
rameters, namely S11, gain, and bandwidth. By evaluating
these models under different data splits (30%, 50%, and 70%
for testing), the aim is to determine the most efficient model
and configuration for accurate and reliable antenna parame-
ter prediction. The evaluation of each model’s performance is
conducted using several metrics, such as mean absolute error
(MAE), mean squared error (MSE), root mean squared error
(RMSE), R-squared (R2), and mean absolute percentage error
(MAPE). The results demonstrate that the Extra Trees model
achieves the highest predictive accuracy, with R2 values of
0.9984 for S11, 0.9990 for gain, and 0.9859 for bandwidth. Ad-
ditionally, the analysis of feature importance underscores the
significant impact of certain features, such as pr and p0, in in-
fluencing the predictive accuracy of these models. This study
underscores the potential of ML to enhance the efficiency and
accuracy of metamaterial antenna design, offering a robust al-
ternative to traditional simulation methods.

2. DATASET DESCRIPTION
The dataset utilized in this study, sourced from Kaggle, in-
cludes eleven features of metamaterial antennas and comprises
572 records with frequency range of 2 to 3GHz [14]. Each
record provides comprehensive details about the antennas, such
as the gap between rings (W0m), height and width of the split
ring resonator (SRR) (Wm), distance between rings (Dm),
width of rings (Tm), number of SRR cells in the array (rows),
distance between the antenna patch and the array (Xa), power
accepted by the antenna (p0), distance between SRR cells in
the array (Y a), power radiated by the antenna (pr), gain, band-
width, and return loss (S11). Table 1 summarizes the char-
acteristics of the dataset, including the minimum, maximum,
standard deviation, and mean values for each feature. These
statistics provide a comprehensive overview of the data distri-
bution and variability, which are critical for understanding the
dataset’s structure and for informing the MLmodels used in the
study. The features will be used to predict the antenna’s gain,
S11, and bandwidth using various regression algorithm.

3. MACHINE LEARNING TECHNIQUES
The rapid advancements in wireless communication systems
have led to an increasing demand for compact antennas that
maintain wide frequency bands and high gain. Traditional an-
tenna design methods, while being effective, often fall short
due to limitations such as low efficiency, low gain, and nar-
row bandwidth. To address these challenges, recent research
has focused on leveraging ML to optimize antenna design and
performance. Machine learning offers powerful tools to model
and predict complex relationships within datasets, making it an
ideal solution for enhancing antenna design. In this context,
four popular ML regression models — Extra Trees, Random
Forest, XGBoost, and CatBoost— are applied to predict critical
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antenna parameters, such as the S11 parameter, gain, and band-
width. Extra Trees, or Extremely Randomized Trees, is an en-
semble learning method that constructs multiple decision trees
during training. Unlike Random Forests, Extra Trees model
uses random splits for each node, which can reduce variance
but might increase bias. This approach is recognized for its
effectiveness and precision in managing large datasets and its
capability to model intricate relationships [15]. Random Forest
builds multiple decision trees and merges their results to im-
prove predictive performance and control overfitting. By using
a bootstrap aggregating (bagging) method and random feature
selection for each tree, Random Forests reduce variance and
enhance generalization, making them robust against overfit-
ting [16]. XGBoost is a gradient boosting framework known for
its speed and performance. It sequentially builds trees, where
each tree corrects the errors of the previous ones. XGBoost
includes regularization techniques to avoid overfitting and al-
lows for parallel processing, making it extremely efficient for
handling large-scale datasets [17]. CatBoost is a gradient boost-
ing algorithm uniquely designed to manage categorical features
effectively. It converts categorical data into numerical values
internally, which reduces the preprocessing steps required. Cat-
Boost is known for its high accuracy, fast learning, and ability
to avoid overfitting, making it suitable for a wide range of re-
gression and classification tasks [18]. To assess the effective-
ness of these machine learning models, a range of metrics are
employed [19, 20].
Mean Squared Error quantifies the average squared deviation

between the actual and predicted values. A lower MSE value
denotes the superior model performance, reflecting smaller er-
rors. The calculation is as follows:

MSE =
1

n

∑n

i=1
(yi − ŷi)

2 (1)

Mean Absolute Error (MAE) represents the average abso-
lute difference between actual and predicted values. MAE is
straightforward to interpret and provides a measure of predic-
tion accuracy without penalizing large errors more than small
ones. It is given by:

MAE =
1

n

∑n

i=1
|yi − ŷi| (2)

R-squared represents the percentage of variance in the depen-
dent variable that can be explained by the independent vari-
ables. R2 values span from 0 to 1, with higher values indicating
greater predictive accuracy. It is computed as:

R2 = 1−

∑n

i=1
(yi − ŷi)

2∑n

i=1
(yi − ȳ)

2
(3)

Root Mean Squared Error is derived from the square root of
the MSE and quantifies the average magnitude of prediction
errors. A lower RMSE signifies superior model performance.
It is expressed as:

RMSE =

√
1

n

∑n

i=1
(yi − ŷi)

2 (4)

Mean Absolute Percentage Error calculates the average abso-
lute percentage deviation between actual and predicted values.
MAPE offers a standardized metric for prediction accuracy, fa-
cilitating comparisons across various datasets. It is calculated
as:

MAPE =
100%
n

∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (5)

4. RESULTS AND DISCUSSION
Figures 1, 2, and 3 present scatter plots comparing actual ver-
sus predicted values of S11, gain, and bandwidth for metamate-
rial antennas, respectively, using four different machine learn-
ing regression models: Extra Trees, Random Forest, XGBoost,
and CatBoost. Each model is evaluated under three different
configurations with varying sizes of training and testing sets
(30%, 50%, and 70% for testing sets). The diagonal dashed
line in each subplot represents the ideal prediction line where
predicted values perfectly match the actual values. Proxim-
ity to this line indicates higher predictive accuracy. The Ex-
tra Trees model (Figures 1(a), 2(a), 3(a)) shows a high degree
of accuracy across all configurations, with most points clus-
tering closely around the diagonal line. For the 30% testing
set, the predictions are nearly ideal, indicating that the model
generalizes well with a larger training set. As the testing set
size increases to 50% and 70%, the model’s predictions remain
robust, although slight deviations from the diagonal line be-
come more apparent. This suggests that while the Extra Trees
model maintains high accuracy, larger testing set sizes intro-
duce more variability, as expected. The Random Forest model
(Figures 1(b), 2(b), 3(b)) also demonstrates strong predictive
performance, with points closely aligning with the diagonal line
across all testing set sizes. The 30% testing set configuration
shows the highest accuracy, with minimal spread around the
line. Increasing the testing set size to 50% and 70% results in a
modest increase in prediction error, but the overall accuracy re-
mains high. This indicates that the RFmodel is effective at han-
dling different training/testing splits and maintains robustness
in its predictions. XGBoost (Figures 1(c), 2(c), 3(c)) shows ex-
cellent predictive accuracy, particularly with the 30% and 50%
testing sets, where the points are tightly clustered around the di-
agonal line. The 70% testing set configuration introduces more
spread, indicating a slight reduction in accuracy with a larger
testing set. Despite this, XGBoost performs consistently well,
highlighting its strength in handling complex data and making
accurate predictions even with substantial testing set sizes.
The CatBoost model (Figures 1(d), 2(d), 3(d)) performs well,

with predictions closely aligning with the actual values across
all configurations. The 30% and 50% testing sets show high ac-
curacy, with points tightly clustered around the diagonal line.
The 70% testing set configuration exhibits a greater spread,
similar to the othermodels, indicating increased variability with
a larger testing set. However, CatBoost maintains a high level
of accuracy, demonstrating its capability to make reliable pre-
dictions even with different training/testing splits. Overall, the
results across Figures 1, 2, and 3 indicate that as the size of
the testing set increases, the variability in predictions also in-
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FIGURE 1. Scatter plots of actual versus predicted values of S11 for four different machine learning regression models: (a) Extra Trees, (b) Random
Forest, (c) XGBoost, and (d) CatBoost.

creases, which is a common trend in machine learning. The Ex-
tra Trees and Random Forest models show slightly better per-
formance in terms of predictive accuracy and robustness than
XGBoost and CatBoost. This is evident from the tighter cluster-
ing of points around the diagonal line, particularly in the config-
urations with smaller testing sets. These results emphasize the

importance of selecting an appropriate training/testing split and
choosing a robust model that can handle variability in the data.
The consistency of the Extra Trees and Random Forest mod-
els suggests that ensemble methods with decision trees are par-
ticularly effective for predicting the S11, gain, and bandwidth
of metamaterial antennas. The findings from this study offer
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valuable insights into the advantages and limitations of various
machine learning models in this application, guiding future re-
search and model selection for similar predictive tasks.

4.1. Performance Metrics
Table 2 presents a performance comparison of the Extra Trees,
XGBoost, CatBoost, and Random Forest regressors on the S11

dataset. The Extra Tree Regressor demonstrates superior pre-
dictive performance with the highest R2 values and the low-
est error metrics across all test sizes. For instance, at a 30%
test size, the Extra Tree Regressor achieves an R2 of 0.9984,
indicating excellent predictive accuracy, and maintains rela-
tively low MSE (0.1032), MAE (0.1128), RMSE (0.3213), and
MAPE (0.9082) values compared to the other models. In con-
trast, the XGBoost regressor shows the lowest performance at
larger test sizes, with the highestMSE (2.8081), MAE (0.6288),
RMSE (1.6757), and MAPE (4.4208) at a 70% test size. The
performance of all models generally decreases as the test size
increases. This trend is expected because larger test sets typi-
cally introduce more variability and challenge to the model’s
predictive capabilities. For example, the Extra Tree regres-
sor’s R2 decreases from 0.9984 at a 30% test size to 0.9948
at a 70% test size, while its MSE increases correspondingly.
Similar trends are observed for the XGBoost, CatBoost, and
Random Forest regressors, with increasing test sizes leading to
higher error metrics and lower R2 values.

TABLE 2. Comparative performance metrics of Extra Trees, XGBoost,
CatBoost, and Random Forest regressors applied to the S11 dataset,
with detailed statistics including MAE, R2, MSE, RMSE, and MAPE
for test sizes of 30%, 50%, and 70%.

MSE MAE R2 RMSE MAPE
Test Size Extra Tree
30% 0.1032 0.1128 0.9984 0.3213 0.9082
50% 0.1772 0.1263 0.9970 0.4210 1.0429
70% 0.3315 0.2210 0.9948 0.5757 1.7457

XGBoost
30% 1.0165 0.2462 0.9830 1.0082 1.5905
50% 1.4500 0.3169 0.9786 1.2042 2.5107
70% 2.8081 0.6288 0.9557 1.6757 4.4208

CatBoost
30% 0.4592 0.2962 0.9923 0.6777 2.5006
50% 0.3912 0.3452 0.9942 0.6255 3.2259
70% 1.0761 0.5897 0.9830 1.0374 4.7913

Random Forest
30% 0.2570 0.2151 0.9957 0.5070 1.7304
50% 1.3396 0.3581 0.9802 1.1574 3.0707
70% 1.6536 0.5993 0.9739 1.2859 4.3554

Table 3 presents a performance comparison of the Extra
Trees, XGBoost, CatBoost, and Random Forest regressors on
the gain dataset. The Extra Tree regressor again demonstrates
superior predictive performance with the highest R²values and
the lowest error metrics across all test sizes. At a 30% test

TABLE 3. Evaluation of Extra Trees, XGBoost, CatBoost, and Random
Forest regressors on the Gain dataset, presentingmetrics such asMAE,
R2, MSE, RMSE, and MAPE for various test set configurations of
30%, 50%, and 70%.

MSE MAE R2 RMSE MAPE
Test Size Extra Tree Regressor
30% 0.0002 0.0069 0.9990 0.0145 0.3106
50% 0.0003 0.0094 0.9988 0.0176 0.4378
70% 0.0091 0.0177 0.9571 0.0956 0.7037

XGBoost
30% 0.0005 0.0125 0.9975 0.0234 0.5272
50% 0.0005 0.0130 0.9979 0.0233 0.6123
70% 0.0150 0.0245 0.9294 0.1225 0.9633

CatBoost
30% 0.0010 0.0148 0.9952 0.0322 0.6840
50% 0.0009 0.0156 0.9966 0.0300 0.7856
70% 0.0067 0.0245 0.9683 0.0821 1.0327

Random Forest
30% 0.0019 0.0154 0.9915 0.0431 0.6611
50% 0.0017 0.0148 0.9936 0.0409 0.6671
70% 0.0105 0.0247 0.9509 0.1022 0.9939

TABLE 4. Performance comparison of Extra Trees, XGBoost, Cat-
Boost, and Random Forest regressors on the Bandwidth dataset, de-
tailing MSE, MAE, R2, RMSE, and MAPE metrics across test sizes
of 30%, 50%, and 70%.

MSE MAE R2 RMSE MAPE
Test Size Extra Tree
30% 1.8545 0.4291 0.9859 1.3618 0.4409
50% 2.1552 0.4825 0.9799 1.4681 0.4682
70% 2.8633 0.5985 0.9791 1.6921 0.5882

XGBoost
30% 2.1430 0.5630 0.9837 1.4639 0.5668
50% 2.8583 0.6254 0.9733 1.6907 0.6009
70% 4.4698 0.7993 0.9674 2.1142 0.8370

CatBoost
30% 3.8355 0.7534 0.9720 1.9584 0.8504
50% 4.2509 0.8440 0.9676 2.0618 0.8133
70% 4.9121 0.8577 0.9541 2.2163 0.8741

Random Forest
30% 2.9770 0.6108 0.9770 1.7254 0.6178
50% 3.0154 0.6246 0.9731 1.7365 0.6722
70% 3.6824 0.7654 0.9722 1.9190 0.7708

size, the Extra Tree Regressor achieves an R2 of 0.9990, in-
dicating near-perfect predictive accuracy, and maintains rela-
tively low MSE (0.0002), MAE (0.0069), RMSE (0.0145), and
MAPE (0.3106) values compared to the other models. In con-
trast, the CatBoost regressor shows the lowest performance at
larger test sizes, with the highest MAPE of 1.0327 and RMSE
of 0.0821 at a 70% test size. The performance of all models
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FIGURE 2. Scatter plots demonstrating the relationship between actual versus predicted values of gain, evaluated using four different machine learning
regression models: (a) Extra Trees, (b) Random Forest, (c) XGBoost, and (d) CatBoost.

generally decreases as the test size increases. For example, the
Extra Tree regressor’s R2 decreases from 0.9990 at a 30% test
size to 0.9571 at a 70% test size, while its MSE increases cor-
respondingly. Similar trends are observed for the XGBoost,
CatBoost, and Random Forest regressors, with increasing test
sizes leading to higher error metrics and lower R2 values.
Table 4 presents a performance comparison of the Extra

Trees, XGBoost, CatBoost, and Random Forest regressors on
the bandwidth dataset. The Extra Tree regressor continues to
demonstrate superior predictive performance with the highest
R2 values and the lowest error metrics across all test sizes. At

a 30% test size, the Extra Tree regressor achieves an R2 of
0.9859, indicating excellent predictive accuracy, and maintains
relatively low MSE (1.8545), MAE (0.4291), RMSE (1.3618),
and MAPE (0.4409) values compared to the other models. In
contrast, the CatBoost regressor shows the lowest performance,
with the highest MSE of 4.9121, MAE of 0.8577, RMSE of
2.2163, and MAPE of 0.8741 at a 70% test size, indicating
higher prediction errors and lower accuracy. The performance
of all models generally decreases as the test size increases. For
example, the Extra Tree regressor’s R2 decreases from 0.9859
at a 30% test size to 0.9791 at a 70% test size, while its MSE
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FIGURE 3. Scatter plots demonstrating the relationship between actual versus predicted values of bandwidth, evaluated using four different machine
learning regression models: (a) Extra Trees, (b) Random Forest, (c) XGBoost, and (d) CatBoost.

increases correspondingly. Similar trends are observed for the
XGBoost, CatBoost, and Random Forest regressors, with in-
creasing test sizes leading to higher error metrics and lowerR2

values.
The Extra Tree regressor consistently outperforms the other

models across all datasets due to its ability to reduce variance
without significantly increasing bias, a characteristic of ensem-
ble learning methods that construct multiple decision trees dur-

ing training. This method’s robustness against overfitting and
its efficient handling of large datasets contribute to its supe-
rior performance in predicting the S11, gain, and bandwidth
of metamaterial antennas. The results indicate that while en-
semble methods like XGBoost and Random Forest also per-
form well, Extra Trees’ specific approach to random splits and
aggregation of results yields better accuracy and lower errors,
making it the most effective model for these applications. The
CatBoost regressor, despite being designed for handling cate-
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FIGURE 4. Error variation curves for different machine learning models on S11, gain, and bandwidth datasets.

gorical features efficiently, shows lower performance in these
contexts, highlighting the importance of model selection based
on specific dataset characteristics and prediction tasks.
The processing time for each model was measured using the

same computational resources to ensure consistency. Process-
ing time is a crucial factor in evaluating the practicality and
efficiency of machine learning models, especially when they
are deployed in real-world applications where computational
resources and time are limited. The training time refers to the
duration required to train the model, while the prediction time
is the time taken for the model to make predictions on new data.
Shorter times are generally preferable, particularly in scenarios
requiring frequent updates or real-time decision-making. From
Table 5, we observe that Extra Trees has the shortest training
time at 0.1641 seconds and a prediction time of 0.0108 sec-
onds, making it highly efficient. Random Forest also shows
efficiency with a training time of 0.2202 seconds and a pre-

diction time of 0.0101 seconds. XGBoost, while being more
robust and accurate, takes longer with a training time of 0.5942
seconds and a prediction time of 0.0283 seconds. CatBoost has
the longest training time at 0.8215 seconds but offers the fastest
prediction time of 0.0069 seconds, suitable for scenarios re-
quiring quick predictions after offline training. These process-
ing times provide insight into the computational efficiency of
eachmodel, helping to inform decisions about their deployment
in various practical applications. Understanding the trade-offs
among training time, prediction time, and model accuracy is
essential for optimizing performance in real-world settings.
The results presented in Figure 4 illustrate the performance

of four different machine learning models — Extra Trees, XG-
Boost, CatBoost, and Random Forest—on three antenna pa-
rameter datasets: S11, gain, and bandwidth. The analysis fo-
cuses on three key error metrics: Mean Squared Error (MSE),
Mean Absolute Error (MAE), and Root Mean Squared Error
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FIGURE 5. Feature importances for metamaterial antenna S11 prediction using different machine learning models.

TABLE 5. Processing time for machine learning models.

Model
Training Time
(seconds)

Prediction Time
(seconds)

Extra Trees 0.1641 0.0108
Random Forest 0.2202 0.0101

XGBoost 0.5942 0.0283
CatBoost 0.8215 0.0069

(RMSE), evaluated across varying test sizes (30%, 50%, 70%).
For the S11 dataset, Extra Trees consistently demonstrates the
lowest MSE across all test sizes, indicating high accuracy. XG-
Boost and Random Forest, on the other hand, exhibit a sharp
increase in error as the test size increases, suggesting poten-
tial overfitting issues with smaller training data. Extra Trees
alsomaintains the lowestMAE values, closely followed byCat-
Boost, while XGBoost and RandomForest display higherMAE
values, particularly at larger test sizes. TheRMSEmetric shows
a similar trend to MSE, with Extra Trees achieving the lowest
values, reflecting their robustness and predictive accuracy for
the S11 dataset. In contrast, XGBoost and Random Forest per-
form worse at higher test sizes. In the case of the gain dataset,
all models show relatively low MSE values, with Extra Trees
and XGBoost performing the best. CatBoost and Random For-

est demonstrate slightly higher MSE but remain competitive.
The MAE values indicate that Extra Trees and XGBoost out-
perform the other models, maintaining lower error rates across
all test sizes, while CatBoost and Random Forest have higher
MAE, particularly at larger test sizes. The RMSE values re-
inforce these trends, with Extra Trees and XGBoost maintain-
ing lower values, confirming their superior performance on the
gain dataset, while CatBoost and Random Forest exhibit in-
creased RMSE at higher test sizes. For the bandwidth dataset,
Extra Trees exhibit the lowest MSE, followed by Random For-
est. XGBoost and CatBoost show higher MSE, with CatBoost
performing the worst as the test size increases. Extra Trees also
consistently achieves the lowest MAE, indicating high predic-
tive accuracy, with Random Forest following and XGBoost and
CatBoost having higher MAE values. The RMSE values align
with the observedMSE andMAE trends, with Extra Trees lead-
ing in performance, Random Forest remaining competitive, and
XGBoost and CatBoost lagging behind.

4.2. Feature Importance

Feature importance is a key metric in understanding the impact
of each feature on the prediction models. In this study, we com-
pute feature importance for each machine learning model using
the following methods:
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FIGURE 6. Feature importances for metamaterial antenna gain prediction using different machine learning models.

Feature importance in tree-basedmodels like Extra Trees and
Random Forest is calculated based on the average decrease in
impurity (Gini impurity or entropy) across all trees. The impor-
tance of a feature f is computed as:

FI (f) =

T∑
t=1

(
1

Nt

Nt∑
n=1

∆In(f)

)
(6)

where T is the total number of trees,Nt the number of nodes in
tree t, and ∆In(f) the decrease in impurity caused by feature
f at node n.
XGBoost computes feature importance using the gain, cover,

and frequency methods. The gain method, which measures the
improvement in accuracy brought by a feature to the branches
it is on, is calculated as:

FI (f) =
∑

i∈nodes(f)

Gi

Hi
(7)

where Gi and Hi are the sum of gradient and hessian statistics
for the splits where feature f is used.
CatBoost uses a permutation-based method to calculate fea-

ture importance. It measures the change in the loss function
after permuting the feature’s values. The importance of a fea-
ture f is given by:

FI (f) = Eπ[L
(
y, ŷπ(f)

)
− L(yŷ) (8)

where L is the loss function, ŷ the predicted values, and π(f)
the permutation of feature f . These calculations help in iden-
tifying the most influential features, which is crucial for model
interpretation and improvement.
Figures 5, 6, and 7 illustrate the feature importances for pre-

dicting the S11, gain, and bandwidth of metamaterial antennas,
respectively, using four different machine learning regression
models: Extra Trees, Random Forest, XGBoost, and CatBoost.
Each subplot represents one model, showing the relative im-
portance of each feature in the dataset. Figure 5 shows that
the feature p0 consistently has the highest importance across
all models, with values of 0.3501 for Extra Trees, 0.7176 for
Random Forest, 0.4468 for XGBoost, and 0.3818 for CatBoost.
This indicates that p0 is the most significant predictor of theS11

parameter. The feature Y a is the second most important for Ex-
tra Trees (0.2848) and XGBoost (0.1807), but it has lower im-
portance for Random Forest (0.0359) and CatBoost (0.1290).
Similarly, pr has moderate importance across all models, with
values of 0.1831 for Extra Trees, 0.2046 for Random Forest,
0.1169 for XGBoost, and 0.1920 for CatBoost. The number
of split ring resonator cells (rows) shows significant impor-
tance for XGBoost (0.2410) and moderate importance for Cat-
Boost (0.1799), but it is less important for Extra Trees (0.1327)
and Random Forest (0.0293). The feature Xa, while gener-
ally having lower importance, is relatively more significant for
CatBoost (0.0998) than the other models. Features dm, tm,
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FIGURE 7. Feature importances for metamaterial antenna bandwidth prediction using different machine learning models.

Wm, and W0m have minimal importance across all models,
indicating that they have little influence on predicting the S11

parameter. The feature importances are normalized to a scale
from 0 to 1 for consistency across models. This visualization
helps identify which features have the most significant impact
on predicting the S11 parameter, guiding further refinement and
optimization of the model.
Figure 6 shows that the feature pr has the highest importance

for Extra Trees (0.5167), Random Forest (0.5617), and XG-
Boost (0.8991), and it is also significantly important for Cat-
Boost (0.4372). This indicates that pr is a critical predictor of
the antenna gain across all models. The feature p0 is highly im-
portant for Extra Trees (0.4511), Random Forest (0.4270), and
CatBoost (0.4548), but it shows minimal importance for XG-
Boost (0.0025). The feature Y a has lower importance overall,
with values of 0.0117 for Extra Trees, 0.0057 for Random For-
est, 0.0449 for XGBoost, and 0.0304 for CatBoost. The fea-
ture Wm is relatively more important for XGBoost (0.0490)
and CatBoost (0.0327), but it is less important for Extra Trees
(0.0081) and Random Forest (0.0016). The feature tm has low
importance across all models, with values of 0.0077 for Ex-
tra Trees, 0.0022 for Random Forest, 0.0000 for XGBoost, and
0.0147 for CatBoost. The feature rows show minimal impor-
tance across all models, with values of 0.0018 for Extra Trees,
0.0005 for Random Forest, 0.0020 for XGBoost, and 0.0104 for
CatBoost. Similarly, the feature dm has low importance, with
values of 0.0014 for Extra Trees, 0.0009 for Random Forest,

0.0012 for XGBoost, and 0.0113 for CatBoost. The featureXa
has minimal importance, with values of 0.0012 for Extra Trees,
0.0004 for Random Forest, 0.0010 for XGBoost, and 0.0058 for
CatBoost. The featureW0m has the lowest importance across
all models, with values of 0.0002 for Extra Trees, 0.0001 for
Random Forest, 0.0003 for XGBoost, and 0.0027 for CatBoost.
Figure 7 shows that the feature Y a has the highest impor-

tance for all models: 0.5239 for Extra Trees, 0.5337 for Ran-
dom Forest, 0.8170 for XGBoost, and 0.7356 for CatBoost.
This indicates that Y a is a critical predictor of the antenna band-
width across all models. The feature p0 is also important but to
a lesser degree, with values of 0.1588 for Extra Trees, 0.2018
for Random Forest, 0.0360 for XGBoost, and 0.0703 for Cat-
Boost. The featureXa has significant importance as well, with
values of 0.1559 for Extra Trees, 0.1594 for Random Forest,
0.1428 for XGBoost, and 0.1355 for CatBoost. The feature pr
has moderate importance for Extra Trees (0.1489) and Random
Forest (0.0986), but it shows minimal importance for XGBoost
(0.0008) and CatBoost (0.0399). Other features such as dm,
rows, W0m, tm, and Wm have very low importance across
all models, indicating that they have little influence on predict-
ing the bandwidth of the antenna. The feature importances are
normalized to a scale from 0 to 1 for consistency across mod-
els. This visualization helps identify which features have the
most significant impact on predicting the antenna bandwidth,
guiding further refinement and optimization of the model.

11 www.jpier.org



Jain et al.

5. CONCLUSIONS
This study validates the effectiveness of ML regression models
in predicting key antenna parameters, offering a viable alterna-
tive to traditional design methods. By evaluating Extra Trees,
Random Forest, XGBoost, and CatBoost across different train-
ing and testing set sizes, models that consistently deliver high
predictive accuracy for S11, gain, and bandwidth have been
identified. Specifically, the Extra Trees model outperforms
other models, achieving R²values of 0.9984 for S11, 0.9990 for
gain, and 0.9859 for bandwidth. Feature importance analysis
revealed that specific features, such as pr and p0, play a critical
role in the predictive models, providing valuable insights into
the parameters that most significantly impact antenna perfor-
mance. Machine learning approaches are increasingly signifi-
cant in contemporary research and are anticipated to play a crit-
ical role in future technological advancements. The accuracy of
predictions largely depends on the chosen model, as evidenced
by the findings. Ensemble methods like Extra Trees and XG-
Boost, which integrate multiple weak learners, have shown su-
perior performance, especially when being combinedwith large
datasets. This research underscores the potential of machine
learning to streamline antenna development processes, making
them more efficient and cost-effective. Future work may ex-
plore additional machine learning algorithms and feature engi-
neering techniques to further enhance predictive performance.
Integrating these models into a comprehensive design frame-
work could significantly expedite the antenna development cy-
cle. Furthermore, comparing the performance of these machine
learning models with traditional simulation tools like CST soft-
ware in future studies could provide deeper insights into their
practical applicability and robustness.
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