Vol. 146
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-07-31
Wearable Antenna System for Osteoporosis Detection and Monitoring Using Machine Learning
By
Progress In Electromagnetics Research C, Vol. 146, 21-32, 2024
Abstract
This article presents a groundbreaking approach to osteoporosis detection and monitoring by integrating a new wearable monopole antenna design with advanced machine learning algorithm (neural network). Inspired by the intricate pattern of a Christmas snowflake, the system utilizes UWB electromagnetic waves and bone attenuation analysis for compact, noninvasive, and highly accurate bone health assessment. Fabricated entirely from textile materials, the antenna features remarkable performance metrics, including an impedance bandwidth of 4.9 to 12.6 GHz and a reflection coefficient consistently below -10 dB, within a compact form factor of 41.9 mm × 29.2 mm. Experimental validation and comparative studies demonstrate the effectiveness of this approach in precisely classifying osteoporosis levels, achieving an outstanding accuracy rate of 87%. This study signifies a significant advancement in osteoporosis detection and diagnosis, combining state-of-the-art antenna technology with advanced machine learning techniques. The developed system holds promise for early detection and personalized monitoring of osteoporosis, contributing to improved healthcare outcomes and enhanced quality of life for individuals at risk of bone-related diseases.
Citation
Eman Gamal Ouf, Anwer S. Abd El-Hameed, Asmaa G. Seliem, and Shaza M. Elnady, "Wearable Antenna System for Osteoporosis Detection and Monitoring Using Machine Learning," Progress In Electromagnetics Research C, Vol. 146, 21-32, 2024.
doi:10.2528/PIERC24051301
References

1. Choi, Han Seok, So Young Park, Yoo Mee Kim, Se Hwa Kim, Kyoung Min Kim, and Yoon-Sok Chung, "Medical treatment of severe osteoporosis including new concept of advanced severe osteoporosis," Osteoporosis and Sarcopenia, Vol. 2, No. 1, 13-19, 2016.
doi:10.1016/j.afos.2016.02.003

2. Aaseth, Jan, Georges Boivin, and Ole Andersen, "Osteoporosis and trace elements --- An overview," Journal of Trace Elements in Medicine and Biology, Vol. 26, No. 2-3, 149-152, 2012.
doi:10.1016/j.jtemb.2012.03.017

3. Delmas, Pierre D., "Treatment of postmenopausal osteoporosis," The Lancet, Vol. 359, No. 9322, 2018-2026, 2002.
doi:10.1016/S0140-6736(02)08827-X

4. Cummings, Steven R., W. Browner, D. M. Black, M. C. Nevitt, H. K. Genant, J. Cauley, K. Ensrud, J .Scott, and T. M. Vogt, "Bone density at various sites for prediction of hip fractures," The Lancet, Vol. 341, No. 8837, 72-75, 1993.
doi:10.1016/0140-6736(93)92555-8

5. Babatunde, Oladapo M., Austin T. Fragomen, and S. Robert Rozbruch, "Noninvasive quantitative assessment of bone healing after distraction osteogenesis," Hss Journal, Vol. 6, No. 1, 71-78, 2010.
doi:10.1007/s11420-009-9130-y

6. Kanis, John A., L. Joseph Melton III, Claus Christiansen, Conrad C. Johnston, and Nikolai Khaltaev, "The diagnosis of osteoporosis," Journal of Bone and Mineral Research, Vol. 9, No. 8, 1137-1141, 1994.
doi:10.1002/jbmr.5650090802

7. Griffith, James F., Klaus Engelke, and Harry K. Genant, "Looking beyond bone mineral density: Imaging assessment of bone quality," Annals of The New York Academy of Sciences, Vol. 1192, No. 1, 45-56, 2010.
doi:10.1111/j.1749-6632.2009.05378.x

8. Lang, T. F., G. Guglielmi, C. Van Kuijk, A. De Serio, M. Cammisa, and H. K. Genant, "Measurement of bone mineral density at the spine and proximal femur by volumetric quantitative computed tomography and dual-energy x-ray absorptiometry in elderly women with and without vertebral fractures," Bone, Vol. 30, No. 1, 247-250, 2002.
doi:10.1016/S8756-3282(01)00647-0

9. Gabriel, C., "The dielectric properties of biological tissues: III. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

10. Marzouk, Hala M., Anwer S. Abd El- Hameed, Ahmed Allam, Ramesh K. Pokharel, and Adel B. Abdel- Rahman, "A new rectangular dielectric resonator sensor for glucose measurement: design, modeling, and experimental validation," International Journal of Circuit Theory and Applications, Vol. 52, No. 6, 3040-3051, 2024.
doi:10.1002/cta.3903

11. Augustine, Robin, Dhanesh G. Kurup, Sujith Raman, Dujin Lee, Kangwook Kim, and Anders Rydberg, "Bone mineral density analysis using ultra wideband microwave measurements," 2015 IEEE Mtt-s International Microwave and Rf Conference (IMaRC), 102-104, Hyderabad, India, 2015.

12. Ghosh, Debalina, Arijit De, Mary C. Taylor, Tapan K. Sarkar, Michael C. Wicks, and Eric L. Mokole, "Transmission and reception by ultra-wideband (UWB) antennas," IEEE Antennas and Propagation Magazine, Vol. 48, No. 5, 67-99, 2006.
doi:10.1109/MAP.2006.277157

13. Tlili, Malika, F. Deshours, G. Alquié, H. Kokabi, S. Hardinata, and F. Koskas, "Microwave resonant sensor for non-invasive characterization of biological tissues," Irbm, Vol. 39, No. 6, 445-450, 2018.
doi:10.1016/j.irbm.2018.10.013

14. Biswas, Balaka, Ayan Karmakar, and Vikash Chandra, "Fractal inspired miniaturized wideband ingestible antenna for wireless capsule endoscopy," AEU -- International Journal of Electronics and Communications, Vol. 120, 153192, 2020.
doi:10.1016/j.aeue.2020.153192

15. Jagan, G., N. Palanikumar, A. Varun-Miranda, and S. Florence, "Development of a planar sensor for monitoring orthopaedic health," Proceedings of The 2016 Irf International Conference, Chennai, India, 71-75, 2016.

16. Cruz, Agnaldo Souza, Sandro Gonçalves Da Silva, and Bruno Henrique De Castro, "Bone density measurement through electromagnetic waves," The 6th 2013 Biomedical Engineering International Conference, 1-5, Amphur Muang, Thailand, 2013.

17. Meaney, Paul M., Douglas Goodwin, Amir Golnabi, Matthew Pallone, Shireen Geimer, and Keith D. Paulsen, "3D microwave bone imaging," 2012 6th European Conference on Antennas and Propagation (EUCAP), 1770-1771, Prague, Czech Republic, 2012.

18. Symeonidis, Symeon, William G. Whittow, Chinthana Panagamuwa, and Massimiliano Zecca, "An implanted antenna system for the monitoring of the healing of bone fractures," 2015 Loughborough Antennas & Propagation Conference (LAPC), 1-4, Loughborough, UK, 2015.

19. Liang, Jianxin, Choo C. Chiau, Xiaodong Chen, and Clive G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3500-3504, Nov. 2005.
doi:10.1109/TAP.2005.858598

20. Paracha, Kashif Nisar, Sharul Kamal Abdul Rahim, Ping Jack Soh, and Mohsen Khalily, "Wearable antennas: A review of materials, structures, and innovative features for autonomous communication and sensing," IEEE Access, Vol. 7, 56694-56712, Apr. 2019.
doi:10.1109/ACCESS.2019.2909146

21. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

22. Wahab, M. G., A. S. Abd El-Hameed, W. Swelam, and M. H. Abd ElAzeem, "Design of miniaturized fractal quasi-self complimentary antenna for UWB applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1809-1810, Fajardo, PR, USA, 2016.

23. Abd El-Hameed, Anwer S., Deena A. Salem, Esmat A. F. Abdallah, and Essam A. Hashish, "Quasi self-complementary UWB notched microstrip antenna for USB application," Progress In Electromagnetics Research B, Vol. 56, 185-201, 2013.
doi:10.2528/PIERB13040807

24. Abd El-Hameed, A. S., D. A. Salem, E. A. Abdallah, and E. A. Hashish, "Fractal quasi-self complimentary miniaturized UWB antenna," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 15-16, Orlando, FL, USA, 2013.

25. Alibakhshikenari, Mohammad, Bal S. Virdee, Panchamkumar Shukla, Naser Ojaroudi Parchin, Leyre Azpilicueta, Chan Hwang See, Raed A. Abd-Alhameed, Francisco Falcone, Isabelle Huynen, Tayeb A. Denidni, and Ernesto Limiti, "Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection," IEEE Access, Vol. 8, 174667-174678, 2020.
doi:10.1109/ACCESS.2020.3025672

26. Lin, Monica C., Diane Hu, Meir Marmor, Safa T. Herfat, Chelsea S. Bahney, and Michel M. Maharbiz, "Smart bone plates can monitor fracture healing," Scientific Reports, Vol. 9, No. 1, 2122, 2019.
doi:10.1038/s41598-018-37784-0

27. Boologam, Ananda Venkatesan, Kalimuthu Krishnan, Sandeep Kumar Palaniswamy, Sachin Kumar, Shreya Bhowmik, Nivesh Sharma, Deepesh Vaish, and Sourish Chatterjee, "On the design and development of planar monopole antenna for bone crack/void detection," International Journal of Antennas and Propagation, Vol. 2022, No. 1, 4663488, May 2022.

28. Abd El-Hameed, Anwer S., Dalia M. Elsheakh, Gomaa M. Elashry, and Esmat A. Abdallah, "A comparative study of narrow/ultra-wideband microwave sensors for the continuous monitoring of vital signs and lung water level," Sensors, Vol. 24, No. 5, 1658, 2024.
doi:10.3390/s24051658

29. Romeo, Stefania, Loreto Di Donato, Ovidio Mario Bucci, Ilaria Catapano, Lorenzo Crocco, Maria Rosaria Scarfì, and Rita Massa, "Dielectric characterization study of liquid-based materials for mimicking breast tissues," Microwave and Optical Technology Letters, Vol. 53, No. 6, 1276-1280, 2011.
doi:10.1002/mop.26001

30. Carey, John J and Miriam F Delaney, "T-scores and Z-scores," Clinical Reviews in Bone and Mineral Metabolism, Vol. 8, 113-121, 2010.
doi:10.1007/s12018-009-9064-4

31. Balmer, Thomas Wyss, Soma Vesztergom, Peter Broekmann, Andreas Stahel, and Philippe Büchler, "Characterization of the electrical conductivity of bone and its correlation to osseous structure," Scientific Reports, Vol. 8, No. 1, 8601, 2018.
doi:10.1038/s41598-018-26836-0

32. Amin, Bilal, Muhammad Adnan Elahi, Atif Shahzad, Eoin Parle, Laoise McNamara, and Martin O’Halloran, "An insight into bone dielectric properties variation: A foundation for electromagnetic medical devices," 2018 Emf-med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med), 1-2, Split, Croatia, 2018.

33. Vendik, Irina B., Vladimir V. Pleskachev, Viktor Yakovlev, and Svetlana Tamilova, "Microwave diagnostics of osteoporosis," 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 1239-1242, Moscow and St. Petersburg, Russia, 2018.

34. Andreuccetti, D., R. Fossi, and C. Perrucci, Calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz, IFAC-CNR, Florence (Italy) 1997-2015. http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.