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ABSTRACT: This article presents a groundbreaking approach to osteoporosis detection and monitoring by integrating a new wearable
monopole antenna design with advanced machine learning algorithm (neural network). Inspired by the intricate pattern of a Christmas
snowflake, the system utilizes UWB electromagnetic waves and bone attenuation analysis for compact, noninvasive, and highly accu-
rate bone health assessment. Fabricated entirely from textile materials, the antenna features remarkable performance metrics, including
an impedance bandwidth of 4.9 to 12.6GHz and a reflection coefficient consistently below −10 dB, within a compact form factor of
41.9 mm× 29.2 mm. Experimental validation and comparative studies demonstrate the effectiveness of this approach in precisely clas-
sifying osteoporosis levels, achieving an outstanding accuracy rate of 87%. This study signifies a significant advancement in osteoporosis
detection and diagnosis, combining state-of-the-art antenna technology with advanced machine learning techniques. The developed sys-
tem holds promise for early detection and personalized monitoring of osteoporosis, contributing to improved healthcare outcomes and
enhanced quality of life for individuals at risk of bone-related diseases.

1. INTRODUCTION

Osteoporosis is a chronic skeletal condition characterized by
low bone mineral density (BMD) and deterioration of bone

tissue, leading to increased bone fragility and a higher risk of
fractures [1]. It is frequently called the “silent disease” because
it advances gradually over time without exhibiting any signs
until a fracture occurs. The World Health Organization (WHO)
states that osteoporosis is considered to have begun if a person’s
bonemineral density (BMD) is less than 2.5 standard deviations
below that of a healthy person [2]. Osteopenia is the term for the
decrease in bonemass brought on by the gradual calcium deple-
tion in the bones. One’s susceptibility to osteoporotic fracture
rates rises with the severity of osteopenia. BMD is calculated
by dividing the bone mineral content (BMC) by the estimated
area of the bone being examined, resulting in a mass/area mea-
surement, which is an “areal” density estimate. Therefore, bone
size, BMD, and BMC are the primary indicators of osteoporotic
fractures. The trabecular bone’s typical structure demonstrates
wideband connection, In contrast, the disorganized band in os-
teoporotic bone no longer adds to the bone’s strength [1, 2]. The
identification of osteoporosis was not attributed to one person.
As a result of the efforts of numerous scientists and researchers,
osteoporosis has come to be recognized as a medical problem.
The first documented evidence of osteoporosis can be found
in antiquated civilizations like Egypt and Greece, where the
ancient Greek physician Hippocrates described symptoms re-
sembling osteoporosis. In the early 1900s, researchers began
to recognize osteoporosis as a disorder characterized by de-
creased bone density and a higher risk of fractures. By the mid-
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1900s, scientists started to differentiate between the concept of
osteoporosis due to age-related bone loss and bone loss due to
other underlying conditions. Diagnostic imaging techniques,
like dual-energy X-ray absorptiometry (DXA), were used in the
late 20th century to quantify bone density and diagnose osteo-
porosis. In the 21st Century, osteoporosis became a major pub-
lic health concern. Today, osteoporosis research continues to
advance, with a focus on prevention, early diagnosis, and im-
proved treatment methods. Osteoporosis is expected to cause
fractures in 56 million people worldwide; early identification
is therefore essential to preventing fractures and successfully
managing the condition. As a result, osteoporosis becomes a
worldwide health concern [3, 4].
There are several imaging techniques and tests commonly

used to evaluate bone density and detect osteoporosis, such
as quantitative computed tomography (QCT), Quantitative ul-
trasonography (QUS), and dual-energy X-ray absorptiometry
(DEXA). The most popular technique for identifying osteo-
porosis, forecasting future fracture risk, and routinely evaluat-
ing patients is DEXA scan [5, 6]. Although the bone mass can
be measured using this method, it does not provide any insight
into the biology, health, or composition of the bone, all of which
are considered important aspects of bone quality [7, 8]. Due to
variations in the soft tissue bridging the trabecular and cortical
spaces, it is rarely able to distinguish between them and is prone
to mistakes [9]. Another popular technique, volumetric QCT,
offers densitometry analysis as well as structural components
for separate cortical and trabecular bone structures. However,
the assessment process is more time-consuming and exposes
the patient to more radiation than DEXA, which raises cancer
susceptibility. Due to uncontrollable factors in repeated assess-
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ments, most other approaches have major drawbacks that ulti-
mately restrict their therapeutic efficacy and render them un-
trustworthy.
Researchers are concentrating on a bone analyzer based on

microwave technology due to the numerous shortcomings of
the available technologies and their desire to minimize costs
and radiation exposure [10]. It has been demonstrated that
microwaves are a more cost-effective option for evaluating
bone structure than DEXA and QCT. Its F is employed to
demonstrate the conductive properties of human tissue and
emits non-ionizing radiation, deemed safe for medical use [11].
Ultra-wideband (UWB) microwave systems are particularly
ideal for bone investigation due to their extensive coverage,
high resolution, and ability to penetrate human tissues, in-
cluding bones [12]. Numerous noninvasive medical appli-
cations employ microwave method because of the aforemen-
tioned benefits [13, 14]. Even though a lot of effort has been
put into the construction of a microwave-based bone analyzer,
more thorough data processing and classification is still neces-
sary [15, 16]. A microwave imaging system was suggested in
one instance to examine the calcaneus bone; however, the re-
search was restricted to identifying fractures [17]. It has also
been suggested to use implantable microwave devices to track
how quickly damaged bones recover [18].
Amonopole is a common design that has always been used to

achieve UWB due to its simplicity and efficiency. Amonopole,
a radio antenna variant, comprises a solitary conductive ele-
ment that extends vertically from a ground plane or conductive
surface. The monopole antenna’s length usually corresponds
to the frequency of the signal that it is intended to broadcast or
receive, and is expressed as a quarter wavelength or a multiple
thereof. Due to their omnidirectional radiation pattern and ease
of installation, monopole antennas are widely utilized in many
different applications, including mobile communications sys-
tems, broadcasting and wireless networks [19]. Their versatil-
ity and effectiveness made it appropriate to use them to realize
the main objective of this research
A wearable antenna is an apparatus that is worn on the body,

engineered for either receiving or transmitting electromagnetic
waves. It can be used in various applications such as wireless
communication, satellite communication, and RFID systems.
Textile antennas are a popular type of wearable antenna. The
antennas are woven into fabric and can be used in wearable gar-
ments such as jackets or hats. They can be seamlessly inte-
grated into clothing, offering flexibility and convenience [20].
The combination of wearable antenna technology with machine
learning algorithms holds great potential for enhancing the ac-
curacy and accessibility of osteoporosis screening and monitor-
ing in clinical settings. Continued research and development
in this area will further refine and validate this integrated ap-
proach, ultimately leading to improved patient outcomes and
advancing healthcare practices.
In this paper, a new wearable monopole antenna design in-

spired by the intricate pattern of a Christmas snowflake is pro-
posed as a sensor for osteoporosis detection. The proposed
sensor uses UWB electromagnetic waves to analyze bones and
classify bone health. The attenuation through bones of different

masses is recorded. Furthermore, this paper integrates machine
learning algorithms into the classification process, enhancing
the accuracy and efficiency of osteoporosis detection. By com-
bining data from the wearable sensor with advanced machine
learning techniques, we achieve robust classification of bone
health status. The subsequent sections of this paper are orga-
nized as follows. Section 2 presents the proposed sensor, detail-
ing its design geometry, fabrication process, and outcomes. In
Section 3, the operational principles are discussed, along with
a comprehensive overview of the microwave system and the
types of bone samples utilized for classification. A comparative
study of the experimental results of propagation delay through
the bones that varies with permittivity is covered in Section
4. Section 5 presents osteoporosis classification and predic-
tion based on neural network. The conclusion of the paper is
provided in Section 6.

2. THE RECOMMENDED SENSOR
The primary goal of this research is to design and implement
a textile UWB antenna with a simple design and novel shape
for bone health examination. Accordingly, the monopole de-
sign is chosen because it is widely used in a variety of appli-
cations due to its simplicity and efficiency, provides an omni-
directional radiation pattern, and is easy to install. The textile
antenna, a type of wearable antenna, is also chosen because it
can be seamlessly integrated into clothing, providing flexibility
and convenience. The proposed antenna resembles a Christmas
snowflake and will be used as a sensor to detect osteoporosis.

2.1. Design Geometry
Figure 1 displays the design geometry of the recommended sen-
sor. The sensor design is based on a traditional circular disc
antenna [21–24]. The circular shape has been modified into a
fractal shape to miniaturize the size while maintaining the same
operating bandwidth by increasing the current path within a
smaller area. The Christmas snowflake monopole shape is cho-
sen for its compactness. To achieve UWB impedance match-
ing, a coplanar waveguide feed with a taper technique is inte-
grated. It is worth noting that the entire antenna is designed
on textile materials, using conductive fabric nanoparticle with
surface sheet resistance of 0.05Ohm/square for the radiating el-

FIGURE 1. Geometry of the introduced antenna.
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FIGURE 2. Simulated S11 versus frequency.

TABLE 1. Optimized dimensions for the proposed sensor (in mm).

Parameter Value Parameter Value Parameter Value
Wf 4 r1 12.4 Wb1 0.8
Wf1 11 r2 6 Wb2 1.49
Lf1 7.5 r3 14.9 Wb3 0.99
Lf2 14.06 S 0.5 Wb4 0.56
Lg1 12.9 Lb1 7 Sb 0.69
Lg2 9.11 Lb2 0.99 d 4
Lb 7.05 Lb3 0.98 d1 0.7

ement and cotton material for the substrate. The material has
a dielectric constant of εr = 1.8 and a tan δ value of 0.025.
The overall optimized dimensions are tabulated in Table 1. Fig-
ure 2 presents the simulated reflection coefficient versus fre-
quency which shows a good matching below −10 dB starting
from 4.9GHz to 12.6GHz.
Figure 3 presents the 5GHz, 7GHz, 8GHz, and 9GHz elec-

tric field distributions of the suggested sensor in order to pro-
vide a deeper knowledge about its working mechanism. It is
evident that different parts of the sensor are responsible for its
radiation at each frequency.
The proposed snowflake UWB antenna design evolves

through three stages, as shown in Figure 4(a). It begins with
a simple circular monopole (Ant.1), then adds four arms to
create a cross shape (Ant.2), and finally develops into an
intricate snowflake pattern (Proposed). This progression aims
to enhance the antenna’s performance, which is evident in
the reflection coefficient (S11) shown in Figure 4(b). The
graph demonstrates that each iteration improves the antenna’s
characteristics, with the proposed snowflake design achieving
significantly lower S11 values across a wider frequency range,
especially between 4.9 and 12.6GHz. This improvement
indicates better impedance matching and radiation properties,
making the snowflake structure particularly effective for UWB
applications. The design’s evolution showcases how geometric
modifications can substantially impact an antenna’s bandwidth
and efficiency.

2.2. Bending Effect
As the antenna is placed around a human arm, there will be
restrictions concerning its ability to bend. To evaluate the ef-
fect of these bends on the performance of the antenna, we have

created a version of the antenna in a cylindrical shape. This al-
lows us to investigate how well the antenna can maintain the
desired operating bandwidth under different curvatures. Fig-
ure 5(a) shows the illustrations of various scenarios where the
antenna is curved into a cylindrical shape, along with the cor-
responding results. This test examines different cylinder radii,
namely 30mm, 50mm, and 70mm. Figure 5(b) shows the re-
lationship between curvature and simulated S-parameters. In
the flat configuration, the bandwidth of the antenna is between
4.9 and 12.6GHz. Within the frequency around 10.5GHz, a
minor mismatch is seen when a simulated cylinder is bent with
a radius of 70mm. On the other hand, the effect of bending is
lower when the bending radius is reduced to 30mm. The com-
paratively small changes in bandwidth before and after bending
show how resilient the suggested textile antenna is to the effects
of bending.

2.3. Fabrication and Results

Using the design parameters outlined in the prior section, a pro-
totype of the proposed sensor is fabricated using textile mate-
rials, employing conductor fabric for the radiating element and
cotton material for the substrate. A vector network analyzer
(ROHDE & SCHWARZ ZVA 67) is utilized to measure the in-
put impedances and reflection coefficient of the manufactured
arrays. Figure 6 shows a photograph of themanufactured proto-
types of the proposed sensor design. The comparison between
simulated and experimental reflection coefficients for the sen-
sor design is illustrated in Figure 7. A reasonable agreement is
shown between the measured and simulated findings. The ob-
served differences between the simulated and measured results
can be attributed to a number of textile antenna-specific fac-
tors that were not taken into consideration during the simulation
phase, including manufacturing tolerances, the effects of sol-
dering on the SMA, and the potential influence of twisting con-
nectors and cable movement. An impedance bandwidth (S11

less than −10 dB) is found to span from 4.9GHz to 12.6GHz,
according to the simulation results. The measured bandwidth
spans from 4.6GHz to 12.3GHz with satisfactory impedance
matching of 7.7GHz.
Table 2 provides a comparison between the proposed sensor

and state-of-the-art designs. While the proposed antenna may
not be as small or have as wide a bandwidth as some existing de-
signs, it is important to emphasize that our design stands out for
its low specific absorption rate (SAR) and high sensitivity com-
pared to others in the literature. These advantages should not
be underestimated, as they can greatly impact the overall per-
formance and safety of the antenna system. Showcasing these
key benefits can highlight the distinct value that the proposed
design offers.

2.4. Specific Absorption Rate Evaluation

The SAR measurement, which quantifies the radiation ab-
sorbed by human tissue, is used to ensure the safety of the wear-
able antenna and protect the patient from potential health risks.
The assessment uses SAM head phantoms and a flat phantom
for body measurements, complying with International Elec-
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(a) (b) (c) (d)

FIGURE 3. Electric field distributions of the proposed design at (a) 5GHz, (b) 7GHz, (c) 8GHz, (d) 9GHz.
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FIGURE 4. (a) Design steps. (b) Reflection coefficient versus frequency.

(a) (b)

FIGURE 5. The simulated S-Parameters of various bending radii with cylinder modes in terms of. (a) Simulation Setup. (b) Simulated S11.

  

FIGURE 6. Photograph of the fabricated sensor. FIGURE 7. The simulated and measured reflection coefficients of the proposed sensor.

trotechnical Commission (IEC) and Federal Communications
Commission (FCC) standards. Accurate SAR measurements
are made using Speag Switzerland’s cSAR3D, which provides
quick and consistent results within 0.3 seconds and a repro-

ducibilitymargin of 0.1 decibels, over a frequency range of 0.65
to 6GHz. Figure 9 displays the SARmeasurement setup for the
wearable antenna. The Electronics Research Institute’s cen-
tral laboratories evaluate the antenna’s SAR at various power
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TABLE 2. Comparative analysis using previously published studies.

Ref. [25] [26] [27] [28] proposed

Antenna type
Implantable
monopole

Antipodal
Vivaldi

Microwave
ring resonator

Planar monopole
Snow flake fractal

monopole (wearable)
Operating frequency 165 to 875MHz 2 to 12GHz 2.45GHz 2.45GHz 4.9 to 12.5GHz

Dimensions (mm ×mm) 54.9× 64.9 22× 22 80× 114 32× 30 41.9× 29.2

Sensitivity Moderate Moderate High Moderate High
SAR (W/Kg) N/A N/A < 1.6 < 0.812 < 0.1

Expremental
validation done

yes yes yes yes yes

Requirement of
an additional
processing unit

No yes yes No yes

TABLE 3. Comparing measured SAR values for the suggested wearable monopole antenna.

Textile Monopole Antenna Power Level
(dBm)

Resonant Frequency
(GHz)10 g (W/kg) 1 g (W/kg)

0.024 0.081 0 5
0.031 0.169 5 5
0.043 0.191 10 5
0.111 0.580 15 5
0.019 0.091 0 6
0.027 0.098 5 6
0.085 0.334 10 6
0.253 0.965 15 6

levels. According to [28, 29], the antenna is considered safe if
its maximum SAR emission is below 1.6W/kg. The measured
SAR values at 4GHz and 6GHz for the proposed textile an-
tenna are provided in Tables 3.

3. OPERATING PRINCIPLE OF OSTEOPOROSIS DE-
TECTION
A microwave signal passing through bone is altered (reflected,
refracted, and attenuated) as a result of the electrical charac-
teristics of the bone sample. Nonetheless, because bone tissue
consists of bone minerals embedded in soft tissue, it is highly
inhomogeneous and has anisotropic properties, which makes
it challenging to accurately characterize bone electromagnet-
ically. The loss of bone mineral content in osteoporosis re-
sults in a decrease in the ratio of bone volume to total volume
(BV/TV). This ratio is frequently employed as a gauge for os-
teoporosis onset and development. As mentioned in (1), some
researchers have tried to determine the conductivity and dielec-
tric constant of bone tissue as a function of BV/TV [30, 31].
Conductivity (σ) shows a linear decrease with respect to bone
density.

BV

TV
= σ (1)

Hence, the transmission and reflection coefficients of the mi-
crowave sensors can be affected, serving as useful indicators of
the osteoporosis level.

3.1. Modeling Osteoporosis Detection
As osteoporosis is indicative of BMD, it is essential to select a
body part that directly reaches the bone for accurate measure-
ment. In this regard, we chose a body area where the bone’s
cross-sectional area predominates over other tissues like skin,
fat, and muscles. Muscles, with a high permittivity of 47.8 and
a loss tangent of 0.33267 at 6.3GHz due to their water content,
effectively attenuate electromagnetic signals and store more en-
ergy. Consequently, minimal energy is received at the receiv-
ing antenna for assessing osteoporosis levels. Therefore, the
human wrist was chosen as the location to assess bone health.
As shown in Table 4, Amin et al. published in vitro permittiv-
ity and conductivity data of human bone from an osteoporotic
patient [32].
Based on the previously published relative permittivity and

conductivity values for both healthy and osteoporotic bones, a
simulation analysis of the human wrist structure was carried out
using CST Microwave Studio. Figure 8(a) illustrates two iden-
tical sensors, placed on a cylindrical human wrist model, for
transmitting and receiving electromagnetic signals. The cross
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(a) (b)

FIGURE 8. (a) Simulated model for osteoporosis detection. (b) Cross section of the human wrest.

TABLE 4. Parameters of electrical properties used to study human bone tissue at 6.3GHz.

Tissue
Bone

Muscle Fat Skin
Healthy Osteopenia Ost. 1 Ost. 2 Ost. 3 Ost. 4

Relative Permitivity (εr) 9.4543 14 18 23 28 32 47.801 4.9087 34.683
Loss tangent 0.38487 0.2040 0.2374 0.2488 0.275129 0.30315 0.33267 0.18965 0.3424

Conductivity (S/m) 1.2772 1 1.5 2 2.7 3.4 5.5818 0.32677 4.1684
Radius/Thickness (mm) 15 15 15 15 15 15 4 6 2

section of the human wrist model is depicted in Figure 8(b),
comprising bone tissue along with skin, muscle, and fat [33]. In
the simulation software, built-in bio-tissue characteristics and
dielectric properties of healthy bones, skin, fat, and muscles
were considered, utilizing the biological tissues database from
the Italian National Research Council [34]. Table 4 [9, 33] lists
several osteopenia and osteoporotic bone characteristics that
were chosen for 6.3GHz investigation. Skin tissue, measur-
ing 2mm in thickness and possessing a relative permittivity of
34.683 and a loss tangent of 0.3424, makes up the outermost
layer of the human wrist. There is a 6mm thick layer of fat tis-
sue with a loss tangent of 0.18965 and a relative permittivity of
4.9087 behind the skin layer. Following the fat layer, there is
a 4mm thick layer of muscle tissue with a relative permittivity
of 47.801 and a loss tangent of 0.33267. These layers of skin,
muscle, and fat surround the layer of bone tissue with 15mm
radial dimension.
To illustrate the varying degrees of osteoporosis, six distinct

stages were considered [33]. Initially, there is the stage of
healthy bone, characterized by a loss tangent of 0.38487 and
a relative permittivity of 9.4543, indicating robust tissue con-
nectivity. The subsequent stage is osteopenia, where the bone
weakens slightly compared to wholesome bone, with a relative
permittivity of 14 and a loss tangent of 0.2040. The degrada-
tion progresses with osteoporotic bone 1, marked by increased
porosity, featuring a relative permittivity of 18 and a loss tan-
gent of 0.2374. This degradation continues with osteoporotic
bones 2, 3, and 4, exhibiting relative permittivity values of 23,
28, and 32, respectively, along with corresponding loss tangent
values of 0.2488, 0.275129, and 0.30315, respectively. In the
final stage, osteoporotic bone 4, the bone structure is severely
compromised, leading to significant weakness and susceptibil-
ity to fractures. As osteoporosis progresses and bone mineral

density decreases, the electrical metrics including permittivity
and loss tangent demonstrate proportional rises.

3.2. Simulation Results

In the analysis of S-parameters for osteoporotic cases, signifi-
cant variations are observed in both phase andmagnitude across
different frequency bands. Notably, as osteoporosis progresses
from milder to severe stages, a notable frequency shift in S11

to lower frequencies is observed, decreasing from 5GHz to
4.2GHz as shown in Figure 9(a). This shift indicates alterations
in the resonant behavior of the system, potentially attributed to
changes in bone density and electromagnetic properties. Addi-
tionally, in Figure 9(b) variations in phase occur across the fre-
quency spectrum, reflecting the complex interaction between
electromagnetic waves and bone tissue. These changes in re-
flection coefficients provide valuable insights into the electro-
magnetic response of bone structures at different stages of os-
teoporosis, aiding in the diagnosis and characterization of the
condition.
Similar to the observations in S11, significant variations are

noted in the transmission coefficient S21 across different stages
of osteoporosis as illustrated in Figure 10. As osteoporosis pro-
gresses from milder to severe stages, there is a discernible shift
in the frequency response of S21 towards lower frequencies,
ranging from 4GHz to 5GHz as in Figure 10(a). This shift indi-
cates alterations in the transmission characteristics of the bone
tissue, potentially influenced by changes in bone density and
electromagnetic properties. Moreover, variations in phase are
evident across the frequency spectrum, reflecting the evolving
interaction between electromagnetic waves and bone structures
as shown in Figure 10(b). These changes in S21 provide valu-
able insights into the transmission properties of bone tissues at
different stages of osteoporosis, contributing to the understand-
ing and diagnosis of the condition.
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(a) (b)

FIGURE 9. Reflection coefficients versus frequency for different levels of osteoporosis. (a) Magnitude. (b) Phase.

(a) (b)

FIGURE 10. Transmission coefficients versus frequency for different levels of osteoporosis. (a) Magnitude. (b) Phase.

4. SYSTEM VALIDATION

4.1. System Description
Figure 11 shows a block diagram illustrating a microwave sys-
tem proposed for generating electromagnetic waves to traverse
through the test object, namely the human wrist, and analyzing
the resulting attenuated transmission characteristics to evaluate
bone health. The microwave signal originates from a source,
undergoes amplification via a power amplifier, and is subse-
quently transmitted through the proposed textile monopole an-
tenna, designed to operate within the frequency range of 4.9 to
12.6GHz. The test object is illuminated by the textilemonopole
antenna’s electromagnetic field. A similar monopole antenna
processes the microwave signal that is received, and a low
noise amplifier reduces noise before sending it to the processor
for final evaluation. For simplicity, Vector Network Analyzer
(VNA) is employed as the primary testing tool instead of the
previously mentioned system.

4.2. Measurement Results
We employed the identical system setup described in the pre-
vious subsection to conduct experimental trials involving sev-
eral volunteers exhibiting varying degrees of osteoporosis from
healthy to Ost. 3. In this section, we will show only the results
of four volunteers for verification. During these experiments,
we captured the phase and magnitude of the S-parameters to
assess the electromagnetic response of the bone tissue across

FIGURE 11. Bone health analysis microwave system architecture and
operating principle.

different osteoporotic conditions. The volunteers were orga-
nized in ascending order from the healthiest individual to the
severest case (Ost. 3). Figure 12 shows the measurement setup.
As presented in Figure 13, the analysis of S11 parameters re-
vealed a distinct frequency shift towards lower frequencies,
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FIGURE 12. Measurement setup.

ranging from 5GHz to 3.5GHz, alongside noticeable alter-
ations in phase. Additionally, in the S21 parameters, indicative
changes were observed as in Figure 14, further highlighting the
impact of osteoporosis on the electromagnetic response of the
bone tissue.

5. OSTEOPOROSIS CLASSIFICATION AND PREDIC-
TION
A novel approach to osteoporosis classification and predic-
tion using machine learning algorithms, specifically neural net-
works, has been presented in this section.

5.1. Utilizing Machine Learning Techniques for Enhanced Data
Analysis and Diagnostic Accuracy
In order to optimize the data collection process and enhance the
accuracy of the diagnostic results, machine learning techniques
were incorporated into the analysis of the dataset. By lever-
aging machine learning algorithms, the model can efficiently
process the entirety of the dataset at once, utilizing all 801
samples per parameter to obtain a more comprehensive under-
standing of the electromagnetic interactions. This approach not
only streamlines the detection process but also ensures that the
model benefits from the full spectrum of frequency domain in-
formation, leading to more precise and reliable diagnostic out-
comes.
Additionally, the dataset is further refined through the di-

vision into patches, allowing for the examination of localized
variations within the frequency spectrum. Each patch captures
a specific subset of the frequency range and is characterized by
averaging the relevant data points within the subset. This seg-
mentation strategy enhances the dataset’s granularity, enabling
a more detailed analysis of the electromagnetic properties and
localized phenomena. With a total of 6408 data samples cate-
gorized into negative (healthy) and three positive levels (Ost. 1,
Ost. 2, and Ost. 3), the model is equipped with a diverse and ro-
bust dataset to effectively distinguish between different health
conditions of the wearer’s wrist based on the electromagnetic
interactions collected by the wearable antenna system.

The dataset used in this study consists of complex scatter-
ing parameters (S-parameters) obtained from a wearable sys-
tem comprising two textile antennas: a transmitter (Tx) and a
receiver (Rx) as described in the previous section. These an-
tennas are strategically positioned on the human wrist, allow-
ing for the measurement of reflections and transmission coeffi-
cients. The dataset encompasses S11 (reflection coefficient at
Tx), S21 (transmission coefficient from Tx to Rx), S12 (trans-
mission coefficient from Rx to Tx), and S22 (reflection coeffi-
cient at Rx) parameters. Each parameter is depicted by both real
and imaginary components, yielding a total of eight features per
data point. Moreover, to capture the intricate electromagnetic
interactions comprehensively, the dataset is sampled across a
frequency range extending from 2GHz to 12GHz, resulting in
801 samples per parameter. It should be notice that the model
does not need to input data 801 times individually during the
detection process. Instead, all 801 samples per parameter are
simultaneously used as part of a single, comprehensive input
vector for each diagnostic instance. This means that for each
diagnostic evaluation, the model processes the entire dataset at
once, leveraging the full spectrum of frequency domain infor-
mation to produce a more accurate and reliable diagnostic re-
sult. This frequency range provides valuable insights into the
electromagnetic behavior of the system and its interaction with
the human wrist. Furthermore, to enhance the dataset’s gran-
ularity and capture localized variations, the data are divided
into patches. Each patch represents a contiguous subset of the
frequency spectrum, allowing for the examination of localized
phenomena within the broader frequency range. The value of
each patch is established by averaging the relevant data points
within the subset, facilitating a more detailed analysis of the
electromagnetic properties. For simplicity, the proposed model
depends on 6408 data samples divided into four categories, en-
suring diversity and robustness in the dataset. The first category
is negative which is healthy, while the other three categories are
positive and have the levels of Ost. 1, Ost. 2, and Ost. 3.

5.2. Neural Network Model Architecture

For the prediction of osteoporosis levels using the complex S-
parameter dataset, we employ a Complex Neural Network ar-
chitecture. As seen in Figure 15, this neural network has numer-
ous levels, including input, hidden, and output layers, in order
to handle the complex nature of the dataset. The input layer of
the neural network consists of 8 nodes, corresponding to the
eight features extracted from the complex S-parameter data.
The hidden layers are constructed with a hierarchical distribu-
tion of neurons, with a configuration of [512, 256, 128]. This
indicates that the first hidden layer contains 512 neurons; the
second hidden layer contains 256 neurons; and the third hidden
layer contains 128 neurons. Rectified Linear Unit (ReLU) acti-
vation functions are applied to each hidden layer, allowing for
the incorporation of non-linearity and empowering the network
to discern intricate patterns present in the data. Dropout layers
are integrated to address overfitting concerns by randomly de-
activating a portion of neurons during training, enhancing the
model’s ability to generalize. Finally, the output layer com-
prises four nodes equal to the number of osteoporosis levels,
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(a) (b)

FIGURE 13. Measured reflection coefficients versus frequency for different levels of osteoporosis. (a) Magnitude. (b) Phase.

(a) (b)

FIGURE 14. Measured trsnsmission coefficients versus frequency for different levels of osteoporosis. (a) Magnitude. (b) Phase.

FIGURE 15. The structure of the artificial neural network.

enabling the neural network to predict the severity of osteo-
porosis based on the input data.
The forward propagation in the neural network can be ex-

pressed mathematically as follows:

Z [1] = W [1]X+b[1]

A[1] = ReLU(Z [1])

Z [2] = W [2]X+b[2]

A[2] = ReLU(Z [2])

Z [L] = W [L]A[L−1]+b[L]

Ŷ = softmax(Z [L])

where X represents the input features; W [l] and b[l] are the
weights and biases of layer l; ReLU is the rectified linear acti-
vation function; and softmax computes the class probabilities.

29 www.jpier.org



Ouf et al.

(a) (b)

FIGURE 16. Neural network performance results. (a) The training and validation loss. (b) The validation accuracy.

FIGURE 17. Confusion matrix.

5.3. Training the Model

The training process of the neural network involves iterative op-
timization of the model parameters to reduce the cross-entropy
loss function. Seventy-five percent of the dataset is devoted
to the training set, fifteen percent to the validation set, and fif-
teen percent to the testing set. This division ensures a balanced
representation of samples across the datasets, facilitating robust
model training and evaluation. Early stopping and learning rate
scheduling strategies are used in training to enhancemodel con-
vergence and avoid overfitting. Early stopping monitors for
loss of validation and halts training if no progress is seen after
a set number of epochs. Learning rate scheduling dynamically

adjusts the learning rate based on the validation loss, facilitating
efficient convergence towards an optimal solution.
Following training, in order to determine how well the

trained model predicts osteoporosis levels, it is tested on the
testing set. The accuracy metric is computed to quantify the
percentage of correctly classified instances, providing insights
into the model’s effectiveness in real-world applications. It is
possible to define the training process as an optimization prob-
lem, aiming to minimize the cross-entropy loss:

Loss = − 1

m

m∑
i=1

C∑
c=1

(y
(c)
i log

(
ŷ
(c)
i

)
)
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wherem is the number of samples, c the number of classes, y(c)i

the true label, and ŷ(c)i the predicted probability for class c.

5.4. Model Evaluation and Performance Visualization

Following training, we test the trained model’s prediction of os-
teoporosis levels using the testing set. We compute the accuracy
score, which measures the percentage of correctly classified in-
stances. Additionally, we visualize the training and validation
loss curves, as well as the validation accuracy curve as illus-
trated in Figure 16, to gain insights into the training progress
and model performance.
The confusion matrix is presented in Figure 17 to assess a

categorization model’s performance. It depicts the four cate-
gories: Healthy, Ost.1, Ost.2, and Ost.3. Every cell within the
matrix displays the count of model predictions against the ac-
tual labels. For instance, the top left cell shows that there are
349 instances where themodel correctly predicted the ‘Healthy’
class. The darker shades along the diagonal from the left to the
bottom right indicates higher numbers of correct predictions for
each respective class, which is a positive indicator of model
accuracy. Off-diagonal cells show misclassifications; for ex-
ample, there are 41 instances where the model incorrectly pre-
dicted ‘Ost.2’ when the true class was ‘Healthy’. The confusion
matrix indicates a strong predictive performance for ‘Healthy’
and ‘Ost.3’ classifications, with acceptable confusion between
‘Healthy’ and ‘Ost.2’, suggesting possible areas for model im-
provement.

6. CONCLUSION

The integration of a novel wearable monopole antenna design,
inspired by the intricate pattern of a Christmas snowflake, with
advanced machine learning algorithms represents a transforma-
tive approach to osteoporosis detection and monitoring. This
innovative system harnesses UWB electromagnetic waves and
bone attenuation analysis to offer a noninvasive, compact, and
highly accurate method for assessing bone health. The an-
tenna design exhibits a good performance metrics, including
an impedance bandwidth spanning 4.9 to 12.6GHz and a re-
flection coefficient (S11) consistently below−10 dB, all within
a compact 41.9mm × 29.2mm form factor. Through rigorous
experimental validation and comparative studies, our research
demonstrates the effectiveness of this integrated approach in
accurately classifying osteoporosis levels. By leveraging ma-
chine learning algorithms to analyze reflections and transmis-
sion coefficients measured by the wearable system, we achieve
high levels of accuracy in osteoporosis prediction, 87%. These
findings represent a significant advancement in the field of
wearable antennas and healthcare technology, offering new op-
portunities for early detection and personalized monitoring of
osteoporosis. Furthermore, this research opens up promising
avenues for innovative medical applications, contributing to
the development of noninvasive tools for osteoporosis detec-
tion and diagnosis.
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