Vol. 141
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-02-17
An Adaptive Learning Co-Evolutionary Variational Particle Swarm Optimization Algorithm for Parameter Identification of PMSWG
By
Progress In Electromagnetics Research C, Vol. 141, 175-183, 2024
Abstract
Targeting the problems of traditional particle swarm algorithm easily falling into local optimum and low recognition accuracy, an adaptive learning co-evolutionary variational particle swarm optimization algorithm (ALCEVPSO) is proposed in this paper to identify the parameters of permanent magnet synchronous wind generator (PMSWG). At first, an adaptive learning strategy is adopted for the inertia weights of the PSO, and the global optimization seeking ability of the PSO is improved. After that, multiple swarm co-evolution strategies are introduced to share the best positions within sub-populations, and by this method, the algorithm's falling into local optimality is avoided. Finally, Cauchy Gaussian mixed variants are introduced, and the population diversity is enriched. The proposed method has the advantages of strong optimization ability and high search accuracy compared with the traditional particle swarm algorithm, which is shown by simulated and experimental results. By this method, the motor parameters of the permanent magnet synchronous motor can be accurately identified.
Citation
Yang Zhang, Mingfeng Zhou, Wenxuan Luo, and Zhun Cheng, "An Adaptive Learning Co-Evolutionary Variational Particle Swarm Optimization Algorithm for Parameter Identification of PMSWG," Progress In Electromagnetics Research C, Vol. 141, 175-183, 2024.
doi:10.2528/PIERC24011201
References

1. Yang, Tao and Dale E. Schinstock, "Systematic design of current control system for permanent magnet synchronous motors," International Journal of Control Automation and Systems, Vol. 11, 1128-1137, 2013.
doi:10.1007/s12555-013-0090-0

2. Zhao, Xiaokun, Baoquan Kou, Lu Zhang, and Haoquan Zhang, "Design and analysis of permanent magnets in a negative-salient permanent magnet synchronous motor," IEEE Access, Vol. 8, 182249-182259, 2020.
doi:10.1109/ACCESS.2020.3026841

3. Kucukyildiz, Gurkan, Ersin Yolacan, Hasan Ocak, and Metin Aydin, "Detection of structural magnet defects for permanent magnet synchronous motors," IEEE Transactions on Energy Conversion, Vol. 37, No. 1, 665-674, Mar. 2022.
doi:10.1109/TEC.2021.3110012

4. Hong, Seung Geon and Il Han Park, "Continuum-sensitivity-based optimization of interior permanent magnet synchronous motor with shape constraint for permanent magnet," IEEE Transactions on Magnetics, Vol. 56, No. 2, 1-4, Feb. 2020.
doi:10.1109/TMAG.2019.2945571

5. Wang, Yicheng, Shuhua Fang, Jianxiong Hu, and Demin Huang, "Multiscenarios parameter optimization method for active disturbance rejection control of PMSM based on deep reinforcement learning," IEEE Transactions on Industrial Electronics, Vol. 70, No. 11, 10957-10968, Nov. 2023.
doi:10.1109/TIE.2022.3225829

6. Ma, Xiaojun and Chao Bi, "A technology for online parameter identification of permanent magnet synchronous motor," CES Transactions on Electrical Machines and Systems, Vol. 4, No. 3, 237-242, Sep. 2020.

7. Feng, Guodong, Chunyan Lai, Kaushik Mukherjee, and Narayan C. Kar, "Current injection-based online parameter and VSI nonlinearity estimation for PMSM drives using current and voltage DC components," IEEE Transactions on Transportation Electrification, Vol. 2, No. 2, 119-128, Jun. 2016.
doi:10.1109/TTE.2016.2538180

8. Bi, Guangdong, Qiwei Wang, Dawei Ding, Binxing Li, Guoqiang Zhang, Gaolin Wang, and Dianguo Xu, "Multi-optimization objective online tracking-based parameter self-tuning method for sensorless PMSM drives," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 1390-1402, Mar. 2023.
doi:10.1109/TTE.2022.3200368

9. Lian, Chuanqiang, Fei Xiao, Jilong Liu, and Shan Gao, "Parameter and VSI nonlinearity hybrid estimation for PMSM drives based on recursive least square," IEEE Transactions on Transportation Electrification, Vol. 9, No. 2, 2195-2206, Jun. 2023.
doi:10.1109/TTE.2022.3206606

10. Li, Xinyue and Ralph Kennel, "General formulation of Kalman-filter-based online parameter identification methods for VSI-fed PMSM," IEEE Transactions on Industrial Electronics, Vol. 68, No. 4, 2856-2864, Apr. 2021.
doi:10.1109/TIE.2020.2977568

11. Zhao, Shengqi, Xiaoyan Huang, Qichao Hu, and Zhaokai Li, "Improved MRAS parameter identification method for PMSM based on permanent magnet flux linkage free model," 2022 25th International Conference on Electrical Machines and Systems (ICEMS), 1-4, Chiang Mai, Thailand, 2022.
doi:10.1109/ICEMS56177.2022.9982909

12. Song, Zhe, Yinghang Lin, Xuesong Mei, and Gedong Jiang, "A novel inertia identification method for servo system using genetic algorithm," 2016 International Conference on Smart Grid and Electrical Automation (ICSGEA), 22-25, Zhangjiajie, China, Aug. 2016.
doi:10.1109/ICSGEA.2016.49

13. Colombo, Luigi, Maria Letizia Corradini, Andrea Cristofaro, Gianluca Ippoliti, and Giuseppe Orlando, "An embedded strategy for online identification of PMSM parameters and sensorless control," IEEE Transactions on Control Systems Technology, Vol. 27, No. 6, 2444-2452, Nov. 2019.
doi:10.1109/TCST.2018.2862415

14. Wei, Hua-Liang, Stephen A. Billings, Yifan Zhao, and Lingzhong Guo, "Lattice dynamical wavelet neural networks implemented using particle swarm optimization for spatio-temporal system identification," IEEE Transactions on Neural Networks, Vol. 20, No. 1, 181-185, Jan. 2009.
doi:10.1109/TNN.2008.2009639

15. Song, Xuewei, Jiwen Zhao, Juncai Song, Fei Dong, Liang Xu, and Jing Zhao, "Local demagnetization fault recognition of permanent magnet synchronous linear motor based on S-transform and PSO-LSSVM," IEEE Transactions on Power Electronics, Vol. 35, No. 8, 7816-7825, Aug. 2020.
doi:10.1109/TPEL.2020.2967053

16. Fernandes, Ricardo Augusto Souza, Mário Oleskovicz, and Ivan Nunes da Silva, "Harmonic source location and identification in radial distribution feeders: An approach based on particle swarm optimization algorithm," IEEE Transactions on Industrial Informatics, Vol. 18, No. 5, 3171-3179, May 2022.
doi:10.1109/TII.2021.3108681

17. Liu, Zhao-Hua, Hua-Liang Wei, Xiao-Hua Li, Kan Liu, and Qing-Chang Zhong, "Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO," IEEE Transactions on Power Electronics, Vol. 33, No. 12, 10858-10871, Dec. 2018.
doi:10.1109/TPEL.2018.2801331

18. Sandre-Hernandez, Omar, Roberto Morales-Caporal, Jose Rangel-Magdaleno, Hayde Peregrina-Barreto, and Julio Noel Hernandez-Perez, "Parameter identification of PMSMs using experimental measurements and a PSO algorithm," IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 8, 2146-2154, Aug. 2015.
doi:10.1109/TIM.2015.2390958

19. Perez, J. N. H., O. S. Hernandez, R. M. Caporal, J. de J. R. Magdaleno, and H. P. Barreto, "Parameter identification of a permanent magnet synchronous machine based on current decay test and particle swarm optimization," IEEE Latin America Transactions, Vol. 11, No. 5, 1176-1181, Sep. 2013.
doi:10.1109/TLA.2013.6684392

20. Liu, Zhao-Hua, Hua-Liang Wei, Qing-Chang Zhong, Kan Liu, Xiao-Shi Xiao, and Liang-Hong Wu, "Parameter estimation for VSI-fed PMSM based on a dynamic PSO with learning strategies," IEEE Transactions on Power Electronics, Vol. 32, No. 4, 3154-3165, Apr. 2017.
doi:10.1109/TPEL.2016.2572186