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ABSTRACT:Targeting the problems of traditional particle swarm algorithm easily falling into local optimum and low recognition accuracy,
an adaptive learning co-evolutionary variational particle swarm optimization algorithm (ALCEVPSO) is proposed in this paper to identify
the parameters of permanent magnet synchronous wind generator (PMSWG). At first, an adaptive learning strategy is adopted for the
inertia weights of the PSO, and the global optimization seeking ability of the PSO is improved. After that, multiple swarm co-evolution
strategies are introduced to share the best positions within sub-populations, and by this method, the algorithm’s falling into local optimality
is avoided. Finally, Cauchy Gaussian mixed variants are introduced, and the population diversity is enriched. The proposed method has
the advantages of strong optimization ability and high search accuracy compared with the traditional particle swarm algorithm, which is
shown by simulated and experimental results. By this method, the motor parameters of the permanent magnet synchronous motor can be
accurately identified.

1. INTRODUCTION

PMSWG has been widely used in various industries due to
its simple physical structure and high power factor [1–4].

Ensuring the accuracy of motor parameters is an indispensable
prerequisite for achieving high performance control of PM-
SWG. However, in actual working conditions, the electrical
parameters [5–8] of PMSWG are easily affected by magnetic
saturation, external temperature, and other factors. In order to
realize efficient motor performance, it is increasingly important
that motor parameters are accurately recognized.
At present, the commonly recognition methods mainly in-

clude: recursive least squares (RLS), genetic algorithm, etc. By
introducing a discount factor, a discount least squares method
is proposed in [9] to identify the stator resistance and straight
and intersecting axis inductances. In this way, the problem of
data saturation and noise interference in the traditional RLS
algorithm is solved. An extended Kalman filter-based mag-
netic chain identification scheme for permanent magnet syn-
chronous motors (PMSMs) is proposed in [10], and the iden-
tification problems caused by the low-order state equations of
PMSM are avoided. The method has a high identification accu-
racy. A model reference adaptive method (MRAS)-based on-
line parameter identification method in a two-phase stationary
coordinate system was used in [11]. In this method, the estima-
tion equations are optimized by using a saturation function in
exponential form. By taking this approach, the convergence
speed and steady state performance of resistance and induc-
tance discrimination are improved. A novel genetic algorithm
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is proposed in [12] for simultaneous identification of resistance,
dq-axis inductance, and magnetic chain of PMSM, and by this
means, the drawbacks of traditional genetic algorithms that re-
quire high initial values of the identified parameters are over-
come. In [13], an adaptive neural network algorithm is pro-
posed to be used for the parameters of PMSM. In this algorithm,
resistance, inductance, and magnetic chain can be identified si-
multaneously without knowing any parameters of the motor.
Particle Swarm Optimization (PSO) algorithm [14–16] is a

new type of intelligent algorithm, which is simple in principle
and easy to compute, and is widely used in all kinds of value
finding problems. An immune fully learned particle swarm
algorithm is proposed in [17]. In this algorithm, the immune
mechanism strategy and the fully learned particle swarm algo-
rithm are combined and have a high recognition accuracy. A
bimodal adaptive wavelet particle swarm algorithm is proposed
in [18]. In this algorithm, the individual polarity values of the
particles are used with adaptive wavelet operators. The forward
and backward learning abilities of the particles are enhanced,
and the convergence speed and search accuracy are improved.
An improved PSO is proposed in [19], and in the proposed al-
gorithm, the best position strategy and Cauchy’s variation are
combined and have a higher accuracy of identification. In [20],
the PSO is combined with the average minimum position strat-
egy, which provides more position information to the particles.
To deal with the problem that PSO algorithms are prone to

premature maturity, an adaptive learning co-evolutionary parti-
cle swarm algorithm is proposed in this paper, and it is applied
to PMSWG electrical parameter recognition. The main study
of this paper is as follows:
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1) The method of id = −2 was introduced to solve the prob-
lem of under-ranking of permanent magnet synchronous wind
turbine, and a full-rank mathematical model is obtained.
2) Adaptive learning strategy is adopted for the inertia

weights. The exploration ability of the algorithm is further
enhanced, and the population becomes more diverse.
3) Multiple population co-evolution strategies are invoked,

and the best position of the population is shared. With the im-
proved algorithm, the optimization ability is improved, and the
particle search range is expanded.
4) The Cauchy Gaussian mixed mutation operation is intro-

duced. The particles can explore more unknown fields, and
more excellent values can be obtained.
The structure of this document is as follows: The PMSWG

equations and under-rank problem solution are covered in Sec-
tion 2. The ALCEVPSO algorithm’s principle and significance
are covered in Section 3. The PMSWG-based parameter iden-
tification principle and flow are covered in Section 4. The al-
gorithm’s viability is confirmed through emulation and experi-
ments in Section 5, and Section 6 concludes the paper.

2. PMSWG EQUATION AND UNDER-RANK PROBLEM
SOLVING
Assuming that PMSWG magnetic saturation, structural asym-
metry, iron loss, and magnet eddy current loss are neglected,
the equation of the ideal PMSWG in the dq-axis is given by the
following equation:{

ud = Rsid + Ld
did
dt − ωeLqiq

uq = Rsiq + Lq
diq
dt + ωeLdid + ωeψf

(1)

where physical quantities ud, uq are the voltages along the d-
q axis; physical quantities id, iq are the currents along the d-q
axis; ωe is the electrical angular speed; ψf is the rotor magnetic
linkage; Ld and Lq are the inductance of PMSWG; Rs is the
resistance of PMSWG.
When the motor is operated in a long-term steady state, the

influence of the differential term is weak. Under this condition,
Eq. (1) can be simplified as: Under the control strategy with
id = 0, (2) can be simplified as{

ud = −Lqωeiq +Rsid

uq = ωeψf +Rsiq + Ldωeid
(2)

Equation (2) has four parameters to be determined, but the
number of equations is two. The equations are under-rank equa-
tions and have no unique solution. To achieve simplification
and coupling lifting of the motor, id = 0 is usually used. Un-
der the control strategy with id = 0, (2) can be simplified as:{

ud = −Lqωeiq

uq = ψfωe +Rsiq
(3)

On the basis of this strategy being employed, a negative se-
quence current of id = −2 is injected into the d-axis, and a
fourth order full rank system of equations is obtained. After

this fourth-order equation is discretized, it is expressed as Equa-
tion (4):

ud1(k) = −Lqωe1(k)iq1(k)

uq1(k) = Rsiq1(k) + ψfωe1(k)

ud2(k) = Rsid2(k)− Lqωe2(k)iq2(k)

uq2(k) = Rsiq2(k) + Ldωe2(k)id2(k) + ψfωe2(k)

(4)

where the subscripts “1” and “2” indicate under the control
strategies of id = 0 and id = −2, respectively.
The data sampling for the two control methods at id = 0 and

id = −2 is shown in Fig. 1.

FIGURE 1. Current sampling plots at id = 0 and id = −2.

3. PARTICLE SWARM OPTIMIZATION
The basic principle of particle swarm algorithm is that the opti-
mal solution of a complex problem is obtained by collaborating
among the particles. In particle swarm algorithm, each particle
is randomly ordered, and each particle is a solution to the prob-
lem. During the iteration process, the individual optimal so-
lution and population optimal solution are tracked through the
fitness function. Individual and group position information is
shared among the particles, and the merit of the current position
is evaluated through the fitness function. The ideal solution to
the algorithmic problem is eventually found when the particles
progressively get closer to the point where the adaption value
is minimized. The velocity and displacement update formulae
for the particle swarm algorithm are as follows:{

vk+1
i = ωvki + c1r1(P

k
best − xki ) + c2r2(G

k
best − xki )

xk+1
i = xki + vk+1

i

(5)

where the physical quantity vi is the current velocity of the par-
ticle; the physical quantity xi is the current displacement of the
particle; Pbest is the optimal value of the individual; Gbest is the
optimal value in the population; k is the current number of iter-
ations; r1 and r2 are random numbers belonging to the interval
[0, 1]; c1 and c2 are the acceleration factors; and ω is the inertia
weight.
The flowchart of particle swarm algorithm applied to param-

eter identification is shown in Fig. 2.

3.1. Adaptive Learning Inertia Weighting Algorithm
In the particle swarm search process, inertia weight is an im-
portant parameter that affects the performance of PSO, and the
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FIGURE 2. PSO parameter identification flow chart.

detection and exploitation ability of the algorithm is controlled
by the inertia weights ω. When the inertia weights are large,
the particle swarm global search ability is strong, and the lo-
cal search ability is weak. However, the opposite is true when
the weight inertia is small. If the inertia weights are constant,
the real-time optimization search ability is weak. For the parti-
cles of the same population, we hope that the global and local
searching ability of the particles is dynamically adjusted in dif-
ferent periods, so the adaptive learning inertia weight expres-
sion is introduced within the population, and the expression is:

ω = (ω1 − ω2) ∗ tan

(
0.875

(
1−

(
t

Tmax

)k
))

+ ω2 (6)

where physical quantity ω1 represents the most initial inertia
weight; physical quantity ω2 represents the most final inertia
weight; t is the current number of iterations of the loop; Tmax is
the given maximum number of iterations; and k is the control
factor.
From Equation (6), it can be seen that in the process of par-

ticle optimization, ω are always in nonlinear change, and are
constantly updated by self-learning. The inertia weights are
nonlinearly decreasing in the whole search process. With the
control factor introduced, the nonlinear nature of the algorithm
is increased, and the global search ability of the algorithm in the
early stage and the local optimization ability in the late stage are
guaranteed. In addition, the problem of falling into local opti-
mization in the search process is solved, and particles falling
into local optimality are avoided, which can find a better posi-
tion faster, and the convergence speed is accelerated.

3.2. Multiple Swarm Co-Evolutionary Approach

In the general case, the global searching ability and local
searching ability of particles are contradictory, and the detec-
tion ability and exploitation ability of particles are also contra-
dictory. If a certain region can be finely searched by a particle,
it is difficult to jump out from this region to another region for a
large-scale search. This will lead to the particles easily fall into
the local optimal state in the optimization process, so in order
to coordinate the detection ability and exploitation ability of the
particle swarm algorithm, multiple swarms co-evolutionary ap-
proach is introduced on the basis of adopting adaptive learning
inertia weights.
The thinking of the algorithm is that the whole population

is divided into multiple subpopulations, and for particles of
different populations, the information is communicated by the
subpopulations. Co-evolution is accomplished by sharing the
information of the Gbest in the current subpopulation. In this
paper, particles are divided into three subpopulations with the
same particle population, making the following definitions: S1
(base population), S2 (base population), S3 (integrated popula-
tion). The particles in the sub-clusters are guaranteed to fly in
the same search space, and the three sub-clusters continuously
exchange information during the search process to improve the
co-evolution capability. The information exchange and evolu-
tion pattern among the subclusters are shown in Fig. 3.

FIGURE 3. Chart of patterns of information exchange and cooperation
among clusters.

After the co-evolution strategy is introduced, the degree of
interconnection between particles is deepened. Furthermore,
the optimal position information is shared; the experience in-
formation of other particles is borrowed; and the collaborative
working ability of the particle swarm is improved. The infor-
mation of all sub-clusters is utilized by the integrated cluster
S3, where no cluster exists in isolation, and they are intercon-
nected. By this method, more information can be utilized by
the particles to decide their behavior. Therefore, in the im-
proved algorithm, the search performance in the neighborhood
of the already searched global optimum is enhanced. At the
same time, as the information of the optimal position is shared,
the probability of the particle near the optimal position is in-
creased, which accelerates the speed of the particle searching
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FIGURE 4. PMSWG parameter recognition schematic.

for the optimal position, thus shortening the convergence time,
and the optimal value can be reached more quickly.

3.3. Cauchy-Gaussian Mixed Variant
In order to make PSO jump out of the local optimum, on the
basis of the population co-evolution strategy was introduced.
A hybrid mutation strategy of Cauchy mutation and Gaussian
mutation is introduced in the algorithm. The Cauchy variation
is introduced; the diversity of the population is expanded; and
global aggregation is raised. The introduction of Gaussian vari-
ation can make the algorithm’s local search ability enhanced
and the convergence speed improved. Therefore, in this paper,
the optimal value is taken as Cauchy Gaussian mixed mutation
operation, and the Gaussian mutation formula is as follows:

Pbest = Pbest ∗ (1 + 1 ∗ randn) (7)

The Cauchy variation formula is shown in the following
equation:

{
Cauchy = tan

(
π ∗
(
rand− 1

2

))
Gbest = Gbest(1 + 1 ∗ Cauchy)

(8)

whereCauchy is a Cauchy-distributed random number, randn a
Gaussian-distributed random number, and rand a random num-
ber between 0 and 1.
After the Cauchy Gaussian mixed-variant operation is intro-

duced, in the pre-algorithmic stage, the particle search range is
extended, and more unknown regions can be explored. At the
same time, the state of particles falling into the local optimum
is avoided, so that it is easy to jump out of the current local op-
timal solution, and the diversity of the population is enriched.
In the late stage of the algorithm, the particles are constantly
close to the optimal position, which helps to improve the con-
vergence speed of the algorithm, so that the particles get the
optimal solution faster and shorten the convergence time.

4. PRINCIPLE OF PARAMETER IDENTIFICATION
The principle of parameter identification using the adaptive
learning co-evolutionary variational particle swarm algorithm
(ALCEVPSO) algorithm is as follows: Set up a reference
model and an adjustable model. With the ALCEVPSO algo-
rithm, the electrical parameters in the adjustable model are con-
stantly updated. When the outputs of the two models satisfy the
minimum values, the outputs are taken as the actual motor pa-
rameters. The schematic diagram of PMSWG parameter iden-
tification based on ALCEVPSO is shown in Fig. 4. The fitting
function is defined as:

Q(Ld, ψf , Rs, Lq) =
(
id − ˆ̇id

)2
+
(
iq − ˆ̇iq

)2
(9)

5. SIMULATION AND EXPERIMENTAL ANALYSIS

5.1. Simulation Analysis
In order to verify the discriminative performance merits of
the ALCEVPSO algorithm, a vector control system simulation
model in a d-q coordinate system is built in Matlab/Simulink
environment, and the schematic diagram is shown in Fig. 5.
The PMSWG parameters are presented in Table 1.

TABLE 1. PMSWG parameters table.

Parameter Numerical value
Number of pole pairs of the motor 4

resistance/Ω 0.958
Stator d-axis inductance/mH 1.2
Stator q-axis inductance/mH 1.2
magnet flux linkage/Wb 0.1827
Given speed/(r/min) 1000
Given Power (kW) 1.0
Given voltage/V 380
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FIGURE 5. Block diagram of vector control structure based on ALCEVPSO parameter identification.

RT-LABScope

DSP

FIGURE 6. Experimental physics platform.

TABLE 2. Simulation results of motor parameter identification.

Parameter PSO ALPSO ALCEPSO ALCEVPSO
Stator resistance/Ω 1.0191 0.9976 0.9812 0.9699

Error/% 6.38% 4.13% 2.42% 1.24%
Stator d-axis and q-axis inductance/mH 1.2672 1.2412 1.2223 1.2131

Error/% 5.60% 3.43% 1.86% 1.09%
Permanent magnet flux linkage/Wb 0.1951 0.1902 0.1874 0.1848

Error/% 6.79% 4.11% 2.57% 1.15%

In the simulation, the parameters of the motor are set as fol-
lows: rated speed 1000 r/min and population size of 20. Collect
sampling data for id = 0 and id = −2 in the same situation,
and the acceleration factor C1 = C2 = 1.5. The sampling time
is taken as 5e–5s.
Table 2 displays the identification findings for the simulation

example.

5.2. Experimental Verification

The Simulink simulation model is imported into RT-Lab, and
the semi-physical simulation experiment of the PMSWG drive
system is achieved, in order to confirm the viability of PM-
SWG parameter identification ALCEVPSO. Fig. 6 depicts the
experimental physics platform, and Fig. 7 shows the RT-LAB
configuration.

179 www.jpier.org



Zhang et al.

FIGURE 7. RT-LAB configuration diagram.

(a) (b)

(c) (d)

FIGURE 8. Resistance recognition curve. (a) PSO. (b) ALPSO. (c) ALCEPSO. (d) ALCEVPSO.

The identification curves of the electrical parameters are dis-
played in Figs. 8–10, and the experiments were carried out in
the identical circumstances as the simulations. Table 3 shows
the experimental results under the selected operating condi-
tions.
Figure 8 shows the plotted resistance recognition curves for

each of the four identification methods. The resistance identi-
fication result under the ALCEVPSO algorithm is 0.9701Ω, as
illustrated in Fig. 8. The error with the real motor resistance
value is 1.26%; under the two algorithms of ALCEPSO and
ALPSO, the errors are 2.44% and 4.15%, respectively. ALPSO
is shortened by 10ms, ALCEPSO shortened by 18ms, and AL-
CEVPSO shortened by 27ms, compared to the standard PSO
convergence time of 67ms.
Figure 9 displays the magnetic flux linkage identification di-

agram. It can be examined in terms of recognition error and

convergence time in Fig. 9. The traditional PSO has a 6.9%
recognition error and a recognition time of 70ms. The ALPSO
has a 4.21% recognition error and a 59ms recognition time. The
ALCEPSO has a 50ms recognition time and a 2.62% recogni-
tion inaccuracy. The ALCEVPSO exhibits a 41ms recognition
time and a 1.2% recognition error.
Figure 10 displays the d-q axis inductive identification

curves. ALPSO, ALCEPSO, and ALCEVPSO had recognition
errors and convergence times in inductive recognition of
3.454% and 61ms, 1.88% and 51ms, and 1.10% and 42ms,
respectively. ALCEVPSO offers the fastest convergence
and highest recognition accuracy among the four recognition
techniques. This indicates that with the Cauchy Gaussian
mixed-variant strategy introduced, the initial population diver-
sity is enriched, and the breadth and depth of the algorithm’s
search space are guaranteed.
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(a) (b)

(c) (d)

FIGURE 9. Magnet flux linkage recognition curve. (a) PSO. (b) ALPSO. (c) ALCEPSO. (d) ALCEVPSO.

(a) (b)

(c) (d)

FIGURE 10. D-q axis inductance recognition curve. (a) PSO. (b) ALPSO. (c) ALCEPSO. (d) ALCEVPSO.

Table 3 displays the experimental findings for the four recog-
nition techniques. From Table 3, it is easy to conclude that
among the four proposedmethods, ALCEVPSO has the highest

recognition accuracy, the smallest error with the system bench-
mark, the shortest convergence time, and the best recognition
effect. In addition, compared with the traditional PSO algo-
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TABLE 3. Experimental results of motor parameter identification.

Parameter PSO ALPSO ALCEPSO ALCEVPSO
Stator resistance/Ω 1.0192 0.9978 0.9814 0.9701

Error/% 6.39% 4.15% 2.44% 1.26%
Stator d-axis and q-axis inductance/mH 1.2673 1.2414 1.2225 1.2132

Error/% 5.61% 3.45% 1.88% 1.10%
magnet flux linkage/Wb 0.1953 0.1904 0.1875 0.1849

Error/% 6.90% 4.21% 2.62% 1.2%

rithm, its maximum error is 5.75 times that of ALCEVPSO,
which solves the problem of low recognition accuracy, and the
convergence time is shortened.

6. CONCLUSION
In traditional particle swarm algorithms, the problems that the
algorithms tend to fall into local optima and low identification
accuracy cannot be avoided. In order to solve this problem, in
this paper, an Adaptive Learning Co-Evolutionary Variational
Particle Swarm Optimization (ALCEVPSO) algorithm is pro-
posed and used to identify the electrical parameters of PMSWG.
By theoretical basis and experimental analysis, the following
conclusions are derived:
1) By using the ALCEVPSO method proposed in this pa-

per, the parameter values of resistance, magnet flux linkage,
and quadrature and direct axis inductance of PMSWG can be
recognized online in real time.
2) ALCEVPSO has better parameter identification ability,

and the identification error does not exceed 1.3%. In addition,
the convergence rate of the algorithm is 40ms/s, and both the
convergence rate and parameter accuracy are better than those
of ALCEPSO and ALPSO identification methods.
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