Vol. 141
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-02-07
Co-Optimization of Long Secondary Double-Sided Linear Flux Switching Permanent Magnet Motors
By
Progress In Electromagnetics Research C, Vol. 141, 101-108, 2024
Abstract
This study aims to achieve the co-optimization of thrust force and thrust fluctuation using a long secondary double-sided linear flux switching permanent magnet motor (LSDLFSPM). Firstly, the motor model is constructed and derived using a theoretical approach. Subsequently, the motor parameters are subjected to sensitivity analysis using the Taguchi method to identify the significant influencing factors. Based on the screening results, the Response Surface Method (RSM) is employed to construct the test space and derive regression equations for thrust force and thrust fluctuation. The Multi-Objective Grasshopper Optimization Algorithm (MOGOA) is then utilized to iteratively optimize the regression equation for optimal parameter sizes. Finally, the optimized results are validated through finite element analysis (FEA) and compared with the original motor performance to demonstrate the effectiveness of the optimization approach proposed in this paper.
Citation
Cheng Wen, Jian Cui, Mingye Li, Zhiping Wan, and Yujian Chang, "Co-Optimization of Long Secondary Double-Sided Linear Flux Switching Permanent Magnet Motors," Progress In Electromagnetics Research C, Vol. 141, 101-108, 2024.
doi:10.2528/PIERC23120601
References

1. Zhou, Haibo, Xiaoling Wang, Zijiao Zhang, and Ji-An Duan, "A novel thrust force test method for a class of precision noncontact linear motion actuators," IEEE Transactions on Industrial Electronics, Vol. 66, No. 7, 5383-5391, Jul. 2019.

2. Hu, Chunfu, Hesong Cui, Xiongsong Li, Xiao Liu, and Shoudao Huang, "Thrust characteristic improvement of permanent magnet linear synchronous motor based on multiobjective optimization," 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA), 1-5, Wuhan, China, 2021.

3. Zhao, Wenxiang, Anqi Ma, Jinghua Ji, Xu Chen, and Tian Yao, "Multiobjective optimization of a double-side linear Vernier PM motor using response surface method and differential evolution," IEEE Transactions on Industrial Electronics, Vol. 67, No. 1, 80-90, Jan. 2020.

4. Wang, Qi, Ke Wang, Yadong Hu, Dihui Zeng, and Jin Wang, "Global optimization of a complementary and modular linear flux-switching permanent magnet motor applied for urban rail transit to reduce normal force," 2023 14th International Symposium on Linear Drivers for Industry Applications (LDIA), 1-4, Hannover, Germany, 2023.

5. Zhong, Zaimin, QinghaoXiao, Xiusen Wang, Minglei Yang, and Yeqin Wang, "Optimal design of doubly-fed linear motor for high speed maglev train based on improved genetic algorithm," 2023 IEEE International Conference on Mechatronics and Automation (ICMA), 2089-2094, Harbin, Heilongjiang, China, 2023.

6. Wang, Ke, Yadong Hu, Qi Wang, and QiongXuan Ge, "Optimization of secondary iron of homopolar linear synchronous motor for traction application based on finite element method and regression model," 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES), 453-459, Chengdu, China, 2023.
doi:10.1109/AEEES56888.2023.10114261

7. Shiri, Abbas and Alberto Tessarolo, "Normal force elimination in single-sided linear induction motor using design parameters," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 394-403, Mar. 2023.

8. Wen, Cheng, Qiankai Zhao, Mingye Li, Jingna Liu, Mingwei Li, and Xingqiao Zhao, "Multi-objective optimization based on hyperparameter random forest regression for linear motor design," International Journal of Machine Learning and Cybernetics, Vol. 13, No. 10, 2929-2942, 2022.

9. Cheng, Ming, Peng Han, and Wei Hua, "General airgap field modulation theory for electrical machines," IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, 6063-6074, Aug. 2017.

10. Liu, Qiang, Haitao Yu, Minqiang Hu, Chunyuan Liu, Jing Zhang, Lei Huang, and Shigui Zhou, "Cogging force reduction of double-sided linear flux-switching permanent magnet machine for direct drives," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2275-2278, May 2013.

11. Wang, Yao, Jinhua Du, and Zhao Hou, "Optimization and performance investigation of high precision permanent magnet linear motor," 2022 25th International Conference on Electrical Machines and Systems (ICEMS), 1-6, Chiang Mai, Thailand, 2022.

12. Chen, Qiushuo, Ying Fan, Yutong Lei, and Xu Wang, "Multi objective optimization design of unequal halbach array permanent magnet vernier motor based on optimization algorithm," 2021 IEEE Energy Conversion Congress and Exposition (ECCE), 4220-4225, Vancouver, BC, Canada, 2021.
doi:10.1109/ECCE47101.2021.9595558

13. Kim, Woo-Hyeon, Chang-Woo Kim, Hyo-Seob Shin, Sang-Sup Jeong, and Jang-Young Choi, "Optimal design of short-stroke linear oscillating actuator for minimization of side force using response surface methodology," IEEE Transactions on Magnetics, Vol. 58, No. 2, 8201905, Feb. 2022.
doi:10.1109/TMAG.2021.3088453

14. Saremi, Shahrzad, Seyedali Mirjalili, and Andrew Lewis, "Grasshopper optimisation algorithm: Theory and application," Advances in Engineering Software, Vol. 105, 30-47, Mar. 2017.
doi:10.1016/j.advengsoft.2017.01.004

15. Mirjalili, Seyedeh Zahra, Seyedali Mirjalili, Shahrzad Saremi, Hossam Faris, and Ibrahim Aljarah, "Grasshopper optimization algorithm for multi-objective optimization problems," Applied Intelligence, Vol. 48, 805-820, 2018.