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ABSTRACT: This study aims to achieve the co-optimization of thrust force and thrust fluctuation using a long secondary double-sided
linear flux switching permanent magnet motor (LSDLFSPM). Firstly, the motor model is constructed and derived using a theoretical
approach. Subsequently, the motor parameters are subjected to sensitivity analysis using the Taguchi method to identify the significant
influencing factors. Based on the screening results, the Response SurfaceMethod (RSM) is employed to construct the test space and derive
regression equations for thrust force and thrust fluctuation. The Multi-Objective Grasshopper Optimization Algorithm (MOGOA) is then
utilized to iteratively optimize the regression equation for optimal parameter sizes. Finally, the optimized results are validated through
finite element analysis (FEA) and compared with the original motor performance to demonstrate the effectiveness of the optimization
approach proposed in this paper.

1. INTRODUCTION

With the development of industrial technology, the ap-
plication of linear motors is becoming increasingly

widespread. LSDLFSPM, a high-efficiency drive device,
exhibits excellent performance and has a wide range of appli-
cation scenarios. However, the fluctuation of thrust generated
during motor operation affects the stability and accuracy of the
motor’s performance [1]. The thrust force, which serves as the
driving force of motor operation, also influences the operating
efficiency of the motor. As the motor thrust force increases,
there is a corresponding increase in thrust fluctuations, which
further impact the stable operation of the motor. Therefore, it
is crucial to conduct co-optimization of motor thrust force and
thrust fluctuations.
The optimal design of electric motors often starts with op-

timizing structural parameters to enhance the motor’s overall
performance, but this is a complex process with multiple pa-
rameters and unknown influences on performance. Intelligent
optimization algorithms in motor optimization overcome tra-
ditional shortcomings and improve design efficiency. In [2],
Taguchi method screens significant factors for a permanent
magnet linear synchronous motor (PMLSM) and combines the
Kriging model with a multi-objective particle swarm optimiza-
tion (MOPSO) algorithm to enhance the comprehensive motor
performance. In [3], in order to address the problems of param-
eter sensitivity and high thrust fluctuation of double-side linear
vernier permanent magnet motors (DS-LVPM), RSM with an
improved differential evolutionary algorithm is used to form
a multi-objective optimization framework to optimize the pa-
rameters of the motors. In [4], sensitivity analysis and multi-
objective genetic algorithm achieve the global optimization of
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a complementary and modular linear flux-switching perma-
nent magnet motor (CMLFSPM), reducing detent force. In [5],
Kriging models and improved genetic algorithm (GA) optimize
parameters for a doubly-fed linear motor (DFLM) subsection,
and FEA verifies the improved method. In [6], machine learn-
ing and multi-objective optimization reduce optimization ef-
fort for homopolar linear synchronous motors (HLSMs) and
improve accuracy. In [7], significant parameters of the motor
are optimized using multi-objective GA considering the mul-
tiplicity of effects on the single-sided linear induction motors
(SLIMs), which substantially reduces the normal force of the
motor. In [8], introducing Bayesian Optimization (BO) and
Hyper Band (HB) into the random forest regression algorithm
(RF) to improve the prediction accuracy of the model as well as
combining it with the second-generation non-dominated sorting
genetic algorithm (NSGA-II) for multi-objective optimization
improves the output performance of flux-switching linear mo-
tors.
In this study, Taguchi’s method is used to screen significant

factors and reduce the complexity of structural parameter op-
timization. RSM is employed to establish the test space and
regression model, which is then combined with MOGOA for
synergistic optimization of thrust force and thrust fluctuation
through a comprehensive optimization method.
The paper is organized as follows. Section 2 develops the

simulation model of LSDLFSPM and derives the theoretical
model of thrust force and thrust fluctuation. Section 3 uti-
lizes Taguchi method to screen significant structural parame-
ters. Section 4 uses RSM to build the experimental design space
for significant parameters and the regression model. Section 5
combines the regression model with MOGOA for iterative op-
timization, solving for optimal structural parameter sizes. Fi-
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FIGURE 1. LSDLFSPM topologies.

FIGURE 2. Initial thrust force and detent force. FIGURE 3. Initial no-load induced voltage.

nally, motor performances before and after optimization are
compared using FEA to illustrate the effectiveness of structural
parameter optimization in this study.

2. MODEL CONSTRUCTION

2.1. Initial Model
The LSDLFSPM has a spatially strict symmetrical structure,
with the long stator consisting solely of an iron core, a short
mover embedded with armature windings, and horizontally al-
ternatingly magnetized permanent magnets. When operating,
the motor is driven by the excitation of the short mover, which
has advantages of simple structure and high thrust force, among
others. The structure of the LSDLFSPM is shown in Fig. 1.

2.2. Initial Performance
Based on the initial structure of the LSDLFSPM topology, its
initial performance is analyzed using FEA. In order to get more
accurately analyzed results, the air gap width is divided into
four layers.
The output thrust force and detent force of the LSDLFSPM

under the initial structural parameters are shown in Fig. 2. The
output average thrust force of the motor is 261.33N; the thrust

fluctuation is 36.19%; and the detent force is 41.0034N ob-
tained from FEA.
The no-load induced voltage and harmonic analysis have a

large impact on the operation and efficiency of the motor. The
three phases A, B, C of the LSDLFSPM are 120◦ apart from
each other with amplitudes of 18.11V, 18.25V, and 18.23V, re-
spectively, at the initial structural parameters. The positive and
negative peaks of the waveforms in Fig. 3 show that the three-
phase waveforms have a better symmetry. The no-load induced
voltage of phase A in Fig. 3 is taken for harmonic analysis, and
by calculation it is known that the harmonic distortion rate of
phase A is 6.27%. The harmonic analysis is shown in Fig. 4.
The magnitude of the air gap flux density has a significant

impact on the energy loss and operation of the motor. Com-
pared to conventional permanent magnet linear motors, the LS-
DLFSPM’s unique polymagnetization characteristics result in a
higher air gap flux density. The peak air-gap magnetization of
LSDLFSPM under four-layer air-gap grid dissection is 1.1 T.
The variation of the air-gap magnetization over a distance of
350mm of moving the motor is given in Fig. 5.

2.3. Theoretical Model

In this research, the thrust force and thrust fluctuation of LS-
DLFSPM are taken as optimization objectives. It is very im-
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FIGURE 4. Initial A-phase harmonic analysis. FIGURE 5. Initial air-gap magnetization density.

portant to determine factors affecting the thrust force and thrust
fluctuation before carrying out the optimization. The thrust
force of LSDLFSPM motor can be determined by combining
the magnetic co-energy method, the work done by the thrust
force, and the displacement of the motor motion [9, 10]:

Fe =
dWe

dx1
|l = Fr + Fpm + Fcog (1)

where x1 is the distance of motor movement; We is the work
done by the thrust force; Fpm, Fr, Fcog are the permanent
magnet thrust, reluctance component, and no-load detent force,
which can also be expressed as:
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Through Eq. (5), it can be seen that the main factors affecting
the thrust force of the LSDLFSPM are the armature current I ,
the structural parameters of the motor dimensions lm, la, wind-
ing coefficients kd, and leakage coefficients kN . In the above
equation, Bm is the air-gap magnetic density; τs is the stator
pole distance of the motor; L is the inductance matrix; Im is
the peak current; ia, ib, ic are the three-phase currents; Rg is
the air-gap magnetoresistance; ϕm is the air-gap magnetic flux;
ψpm is the permanent magnet flux matrix; Npm is the number

of turns per phase of winding. From this it is also possible to
define the thrust fluctuation of the motor thought:

Frip =
Fmax − Fmin

Favg
× 100% (6)

Through the analysis of FEA and theoretical models, thrust
force of the LSDLFSPM is related to the dimensions of the
structural parameters and other factors, so it is feasible to carry
out the optimization of structural parameters to improve the per-
formance of the motor.

3. SIGNIFICANT INFLUENCE PARAMETERS SCREEN-
ING
LSDLFSPM motor has many structural design parameters, ac-
cording to its flux switching principle and design principle,
and the parameters can be categorized into fixed and adjustable
ones.
The fixed parameters include stator pole pitch, mover pole

pitch, winding phase spacing, mover tooth width, stator tooth
width, etc., which are related to the basic attributes of the motor.
In order to facilitate the optimization of the structural parame-
ters, the air gap width is fixed at 1mm in this paper. The widths
of the teeth of the mover and stator are fixed at 4.455mm, di-
vided into fixed parameters. Adjustable parameters total 9, with
specific labeling and initial dimensions, are shown in Figs. 6
and Table 1.
The number of LSDLFSPM adjustable structure parameters

is large. How to effectively, with high efficiency, screen out
the parameters that significantly affect the motor thrust force
and thrust fluctuation is critical for carrying out the optimiza-
tion design. Taguchi’s method, a parameter sensitivity analysis
technique, can be used to select different level combinations of
parameters through fewer experimental designs, identifying pa-
rameters significantly influencing optimization objectives [11].
Nine adjustable parameters are set at three level values, estab-
lishing a 27-experiments space, as shown in Table 2.
The mean signal-to-noise (S/N) ratio is an important con-

sideration for sensitivity analysis by Taguchi’s method, whose
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FIGURE 6. Adjustable parameters marking.

FIGURE 7. S/N ratio mean.

magnitude is the key for screening and analyzing significant
parameters. Based on the experimental data in Table 2, the
mean value of S/N ratio is calculated for each parameter. In
this paper, significant influence parameters are determined on
the principle that the thrust force of the motor is expected to be
large. Fig. 7 shows the effect diagram of S/N ratio.
From Fig. 7, it can be clearly seen that the nine adjustable

parameters have average value of S/N ratio at the three set lev-
els. The larger the value is, the more significant the effect of
the parameter on the optimization objective is. The S/N ratios
for the mover connection height h3, mover connection width
w1, and stator yoke height h6 have small mean values, reflect-

ing the small influence of these three parameters on the output
thrust force of the motor, while the other six structural parame-
ters have large mean values of the S/N ratios. According to this,
the significant parameters are finally determined as follows h1,
h2, h4, h5, hpm, wpm.

4. ESTABLISHMENT OF REGRESSION MODEL
Having determined the significant influence parameters of LS-
DLFSPM, it is necessary to establish a test space for it to lay
the foundation for the optimization design. In this research,
RSM is used to establish the test space, and it can reduce the
test space under consideration of the interaction of parameters.

104 www.jpier.org



Progress In Electromagnetics Research C, Vol. 141, 101-108, 2024

TABLE 1. Adjustable parameter names and initial sizes.

Names Initial size (mm)
Mover tooth height h1 2.8
Mover bridge arms h2 9.7

Mover connection height h3 3
Mover yoke height h4 9
Stator tooth height h5 2.8
Stator yoke height h6 17.8

Mover connection width w1 2.235
Permanent magnet height hpm 30
Permanent magnet width wpm 4

TABLE 2. Taguchi method experimental space.

Tests h1 h2 h3 h4 h5 h6 w1 hpm wpm Fe Frip

1 1.2 40 9 4.5 3.99 5.6 2.8 17.8 3 305.35 0.4183
2 3.6 40 18 1.5 3.99 5.6 3.6 14 2 361.94 0.1806
3 3.6 20 9 3 6.65 5.6 3.6 14 3 303.55 0.4511
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26 1.2 40 13.5 4.5 1.33 9.7 3.6 15.9 2 369.82 0.2507
27 2.8 30 18 1.5 3.99 1.5 3.6 17.8 4 395.38 0.3536

In addition, it can improve the efficiency of experimental de-
sign. Based on the screening results, 77 RSM test spaces are
established as shown in Table 3.
After the experimental design space is established using

RSM [12, 13]. It can also efficiently build polynomial regres-
sion models to fit the relationship among thrust force, thrust
fluctuation, and parameters, which can be expressed as follows:

Y (X) = f(x1, x2, . . . , xk) (7)

Y (X) is a continuously differentiable objective function, which
is simulated using a second-order polynomial model based on
the relationship between the significant parameters of the motor
and the performance to be optimized in this paper, expressed as:

y = β0 +

n∑
i=1

βixi +

n∑
i=1

n∑
j=1

βijxixj + ε (8)

After organizing the above equation,

Y = Xβ + ε (9)

where Y is the matrix of the objective function consisting of
thrust force and thrust fluctuation; X is the significant param-
eter variable; β is the coefficient of each item and satisfies
β = (XTX)−1XTY .
In this paper, a second-order model is used to fit the rela-

tionship between six significant parameters and thrust force and
thrust fluctuations. The RSM polynomial regression model for
thrust force and thrust fluctuation was developed with the ex-
perimental data in Table 3 as:

y1 = −585.7+102.3x1+26.6x2+6.18x3+30.73x4

+172.6x5+19.36x6−17.86x21+1.05x22−0.353x23

−1.302x24−17.87x25−0.2159x26+0.849x1x2

+0.178x1x3+0.340x1x4+0.44x1x5−0.060x1x6

−0.412x2x3−0.787x2x4−5.24x2x5−0.536x2x6

−0.2633x3x4−0.382x3x5+0.0134x3x6+2.313x4x5

+0.2420x4x6−3.014x5x6 (10)
y2 = 3.064+0.034x1−0.141x2−0.0038x3−0.1923x4

−0.348x5−0.0483x6−0.0072x21+0.0099x22

−0.00022x23+0.00559x24+0.0247x25+0.000500x26

−0.00379x1x2−0.00067x1x3+0.00043x1x4

−0.00071x1x5+0.000104x1x6+0.00098x2x3

+0.00176x2x4+0.00513x2x5+0.001536x2x6

+0.000746x3x4−0.00219x3x5−0.000043x3x6

+0.00256x4x5−0.000092x4x6+0.005900x5x6 (11)

The degree of model strength must be assessed once a re-
gression model has been developed. The coefficient of deter-
mination R2 is an indicator to evaluate the fitting degree of
the model, with values closer to 1, indicating a more effective
model. The Root Mean Square Error (RMSE) is an indicator
for evaluating the accuracy of the model’s prediction, which
reflects the difference between the predicted and the real val-
ues, and the expressions of the following expressions for both
are as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (12)

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
(13)
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TABLE 3. Taguchi method experimental space.

Tests h1 h2 h4 h5 hpm wpm Fe Frip

1 3.6 3.6 9.7 18 2 40 343.43 0.1636
2 2.4 3.6 5.6 13.5 3 30 350.12 0.1788
3 1.2 3.6 1.5 9 4 20 249.36 0.4549
. . . . . . . . . . . . . . . . . . . . . . . . . . .

76 3.6 2.4 5.6 13.5 3 30 388.25 0.1849
77 2.4 2.4 5.6 18 3 30 392.30 0.1785

TABLE 4. Evaluation of regression models.

Evaluation metrics R2 RMSE

Thrust force Fe 0.98375 8.077
Thrust fluctuation Frip 0.90059 0.048

TABLE 5. Optimal size of significant structural parameters.

Parameters h1 h2 h4 h5 hpm wpm

Size (mm) 1.95 1.50 16.45 3.236 31.31 2.72
FIGURE 8. MOGOA flow chart.

where yi is the actual value; ŷi is the model predicted value; ȳ
is the mean value; and n is the number of tests.
After the establishment of the regression model, the model is

evaluated simultaneously using both R2 and RMSE. As seen
in Table 4, the established regression model can meet the re-
quirements of accuracy together with the subsequent parameter
optimization search.

5. CO-OPTIMIZATION MODEL AND PERFORMANCE
COMPARISON
5.1. Optimization Model
Based on the establishment of the polynomial regression model
of RSM, multi-objective grasshopper optimization algorithm
(MOGOA) is introduced to carry out iterative optimization of
the model to achieve the co-optimization of thrust force and
thrust fluctuation. MOGOA is a biomimetic optimization algo-
rithm proposed in 2017, which performs the global search and
iterative optimization by mimicking different behavioral per-
formances of grasshoppers in different growth cycles [14, 15].
In a multi-objective optimization problem, each grasshopper

individual searches near an optimal solution, continuously up-
dating the optimal solution through search behavior until the
stopping condition is met. Through continuous iteration, non-
dominated solutions can be obtained, which are not dominated
by other solutions and correspond to different solutions. The
basic flow of MOGOA is shown in Fig. 8, depicting the pro-
cess of obtaining non-dominated solutions through the iterative
search and update of the optimal solution.
Equations (10) and (11) are iteratively optimized as the ob-

jective functions of MOGOA, and the obtained iteration results
are shown in Fig. 9. As can be seen in Fig. 9, the thrust fluctua-
tion increases gradually as the average thrust force of the motor
increases.

In the resulting Pareto frontiers, the two properties of thrust
force and thrust fluctuation are considered, and a suitable one
is selected as the optimal solution, corresponding to the dimen-
sions of the six significant structural parameters as shown in
Table 5.

5.2. Performance Comparison

Simulation and experiments are carried out to verify the derived
parameter sizes for comparison using FEA, while ensuring that
other parameters remain unchanged. Fig. 10 shows the compar-
ison of the no-load induced voltage. The three-phase induced
voltage amplitudes of A, B, and C are 29.68V, 30.54V, and
29.31V, with an increase of 11.57V, 12.29V, and 11.08V. The
increase in no-load induced voltages improves the energy con-
version efficiency of the motor. Fig. 11 shows the harmonic
analysis of phase A. The harmonic distortion rate is reduced
from 6.27 to 3.91%. The decreased harmonic distortion rate
improves stability and reliability of motor operation.
Figure 12 shows the comparison of thrust force and detent

force before and after optimization of LSDLFSPMmotor struc-
tural parameters. The thrust force increased from 261.33N to
415.92N, resulting in an improvement of 154.59N. Addition-
ally, the detent force decreased from 41.0034N to 25.80N, re-
ducing by 15.2034N. Furthermore, the thrust fluctuation re-
duced from 36.19% to 15.91%, showing a reduction of 20.28%.
The FEA results indicate that the performance of the LSDLF-
SPM motor is enhanced through the optimization of its struc-
tural parameters, as discussed in this paper.
Figure 13 illustrates the comparison of the air gap magnetic

density, which is optimized to increase from 1.1 T to 1.65 T. It
is also illustrated that after performing the parameter optimiza-
tion, the motor has higher magnetic field strength and output
performance.
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FIGURE 9. Results of MOGOA iteration. FIGURE 10. Induced voltage comparison.

FIGURE 11. Comparison of harmonic analysis.

FIGURE 12. Comparison of thrust and detent force. FIGURE 13. Air gap magnetic density comparison.
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6. CONCLUSION
In this paper, based on prior research on LSDLFSPM, a com-
prehensive optimization method is proposed utilizing sensitiv-
ity analysis via Taguchi method, RSM for experimental space
and regression model construction, combined with MOGOA
optimization, and verified by FEA experiments. This method
aims to enhance the no-load induced voltages, minimize A-
phase harmonic distortion rate, boost output average thrust
force, reduce thrust fluctuation, lower detent force, and opti-
mize permanent magnet usage of the LSDLFSPM. The results
demonstrate a 154.59N increase in output average thrust force,
a 20.28% reduction in thrust fluctuation, a 15.2034N decrease
in detent force, and 29.03% reduction in permanent magnet us-
age. This method achieves synergistic optimization of thrust
force and thrust fluctuation, enhancing operational stability and
output performance of the motor.
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