Vol. 140
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-01-18
UWB Resonator-Based Supervised Learning for Breast Tumor Diagnosis
By
Progress In Electromagnetics Research C, Vol. 140, 93-104, 2024
Abstract
This paper proposes an application of ultra-wideband antenna in conjunction with supervised machine learning to detect the existence of breast tumor. The microstrip line fed octagonal shaped UWB antenna is designed by using Ansys high-frequency structure simulator 2022 R2. It is fabricated on double sided copper FR4 epoxy glass substrate of size 40 mm × 40 mm and tested by using vector network analyzer N9916A. The antenna structure is optimized over the frequency spectrum of 3.1 GHz to 10.6 GHz to obtain minimum value of return loss. The optimized structure provides bandwidth spectrum of 8.38 GHz covering the frequency range of 2.76 to 11.15 GHz with maximum gain of 5.3 dB at 8 GHz. The homogenous artificial breast phantoms with and without tumor are fabricated using different chemical compositions. The dielectric traits of skin, fatty, glandular and tumor layers are analyzed. Microwave sensing for detecting the presence of breast cancer uses the disparity between tumor and breast tissues, requiring consideration of dispersiveness to accurately assess the dielectric characteristics of the breast model due to its lossy dispersive nature. The three sets of reflection characteristics of the entire system comprised of antenna with phantoms are recorded by using VNA with a gap of week to constitute the dataset. The ultrasonic gel serves as a medium for matching between the breast model and antenna. Further, the supervised machine learning approach is used to improve the detection accuracy. Supervised learning, a key category of machine learning, uses labeled data to predict unseen data. The Logistic Regression, Support Vector Machine, K-Nearest Neighbors, Random Forest and Multilayer Perceptron algorithms are applied on the measured data to classify the healthy and tumorous tissues. The random forest proven to be best fit on the data with auc score of 98.05%.
Citation
Sonal Amit Patil, and Ashwini Naik, "UWB Resonator-Based Supervised Learning for Breast Tumor Diagnosis," Progress In Electromagnetics Research C, Vol. 140, 93-104, 2024.
doi:10.2528/PIERC23111303
References

1. Mathur, Prashant, Krishnan Sathishkumar, Meesha Chaturvedi, Priyanka Das, Kondalli Lakshminarayana Sudarshan, Stephen Santhappan, Vinodh Nallasamy, Anish John, Sandeep Narasimhan, Francis Selvaraj Roselind, and ICMR-NCDIR-NCRP Investigator Grp, "Cancer statistics, 2020: Report from national cancer registry programme, India,", Vol. 6, No. ., 1063-1075, Jun. 2020.
doi:10.1200/GO.20.00122

2. Garcia-Figueiras, Roberto, Sandra Baleato-Gonzalez, Anwar R. Padhani, Antonio Luna-Alcala, Juan Antonio Vallejo-Casas, Evis Sala, Joan C. Vilanova, Dow-Mu Koh, Michel Herranz-Carnero, and Herbert Alberto Vargas, "How clinical imaging can assess cancer biology," Insights into Imaging, Vol. 10, No. 1, Springer, Mar. 2019.
doi:10.1186/s13244-019-0703-0

3. Heywang-Koebrunner, Sylvia H., Astrid Hacker, and Stefan Sedlacek, "Advantages and disadvantages of mammography screening," Breast Care, Vol. 6, No. 3, 199-207, 2011.
doi:10.1159/000329005

4. Fear, Elise C., Paul M. Meaney, and Maria A. Stuchly, "Microwaves for breast cancer detection?," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.

5. Washington, D. C., "First report and order, revision of part 15 of the commissions rule regarding ultra-wideband transmission systems," Federal Communications Commission, Apr. 2002.

6. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Physics in Medicine and Biology, Vol. 50, No. 18, 4245-4258, Sep. 2005.
doi:10.1088/0031-9155/50/18/001

7. Zhang, Huiyu, Soon Yim Tan, and Hong Siang Tan, "A novel method for microwave breast cancer detection," 2008 Asia Pacific Microwave Conference (APMC 2008), Vol. 1-5, 2342-2345, Hong Kong, China, IEEE, Dec. 2008.

8. Islam, Md. Tarikul, Md. Samsuzzaman, Salehin Kibria, and Mohammad Tariqul Islam, "Experimental breast phantoms for estimation of breast tumor using microwave imaging systems," IEEE Access, Vol. 6, 78587-78597, 2018.
doi:10.1109/ACCESS.2018.2885087

9. Ray, K. P., "Design aspects of printed monopole antennas for ultra-wide band applications," International Journal of Antennas and Propagation, Vol. 2008, 1-8, 2008.
doi:10.1155/2008/713858

10. Dastranj, Aliakbar, Ali Imani, and Mohammad Naser-Moghaddasi, "Printed wide-slot antenna for wideband applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3097-3102, Oct. 2008.
doi:10.1109/TAP.2008.929459

11. Shaalan, Abdo AbdelMonem and M. I. Ramadan, "Design of a compact hexagonal monopole antenna for ultra-wideband applications," Journal of Infrared Millimeter and Terahertz Waves, Vol. 31, No. 8, 958-968, Aug. 2010.
doi:10.1007/s10762-010-9654-8

12. Zhu, Xu-Fei and Donglin Su, "A study of a compact microstrip-fed UWB antenna with an open T-slot," Progress In Electromagnetics Research Letters, Vol. 13, 181-189, 2010.

13. Kahar, Manisha, Arup Ray, Debashree Sarkar, and P. P. Sarkar, "An UWB microstrip monopole antenna for breast tumor detection," Microwave and Optical Technology Letters, Vol. 57, No. 1, 49-54, Jan. 2015.
doi:10.1002/mop.28773

14. Porter, Emily, Evgeny Kirshin, Adam Santorelli, Mark Coates, and Milica Popovic, "Time-domain multistatic radar system for microwave breast screening," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 229-232, 2013.
doi:10.1109/LAWP.2013.2247374

15. Porter, Emily, Evgeny Kirshin, Adam Santorelli, and Milica Popovic, "Microwave breast screening in the time-domain: Identification and compensation of measurement-induced uncertainties," Progress In Electromagnetics Research B, Vol. 55, 115-130, 2013.

16. Afyf, Amal, Larbi Bellarbi, Anouar Achour, Fatima Riouch, and Abdelhamid Errachid, "A novel low cost UWB antenna for early breast cancer detection," American Journal of Electromagnetics and Applications, Vol. 3, No. 5, 31-37, 2015.

17. Cheng, Yiou and Minghuan Fu, "Dielectric properties for non-invasive detection of normal, benign, and malignant breast tissues using microwave theories," Thoracic Cancer, Vol. 9, No. 4, 459-465, Apr. 2018.
doi:10.1111/1759-7714.12605

18. Selvaraj, Vanaja and Poonguzhali Srinivasan, "Interaction of an EM wave with the breast tissue in a microwave imaging technique using an ultra-wideband antenna," Biomedical Research, Vol. 28, No. 3, 1025-1030, 2017.

19. Subramanian, Suresh, B. Sundarambal, and D. Nirmal, "Investigation on simulation-based specific absorption rate in ultra-wideband antenna for breast cancer detection," IEEE Sensors Journal, Vol. 18, No. 24, 10002-10009, 2018.

20. Amdaouch, Ibtisam, Otman Aghzout, Azzeddin Naghar, Ana Vazquez Alejos, and Francisco J. Falcone, "Breast tumor detection system based on a compact UWB antenna design," Progress in Electromagnetics Research M, Vol. 64, 123-133, 2018.
doi:10.2528/PIERM17102404

21. Padmavathy, T. V., P. Venkatesh, D. Bhargava, and N. Sivakumar, "Design of I-shaped dual C-slotted rectangular microstrip patch antenna (I-DCSRMPA) for breast cancer tumor detection," Cluster Computing-the Journal of Networks Software Tools and Applications, Vol. 22, No. 6, 13985-13993, Springer, Nov. 2019.
doi:10.1007/s10586-018-2161-8

22. Islam, Md. Tarikul, M. Samsuzzaman, M. Faruque, Mandeep Jit Singh, and M. T. Islam, "Microwave imaging based breast tumor detection using compact wide slotted UWB patch antenna," Optoelectronics and Advanced Materials-Rapid Communications, Vol. 13, No. 7-8, 448-457, Jul. 2019.

23. Aydin, Emine Avsar and Mumie Kaya Keles, "UWB rectangular microstrip patch antenna design in matching liquid and evaluating the classification accuracy in data mining using random forest algorithm for breast cancer detection with microwave," Journal of Electrical Engineering & Technology, Vol. 14, No. 5, 2127-2136, Springer, Sep. 2019.
doi:10.1007/s42835-019-00205-x

24. Rao, Praveen Kumar and Rajan Mishra, "Elliptical shape flexible MIMO antenna with high isolation for breast cancer detection application," IETE Journal of Research, Vol. 69, No. 1, 325-333, Jan. 2023.
doi:10.1080/03772063.2020.1819887

25. Hossain, Amran, Mohammad Tariqul Islam, Ali F. Almutairi, Mandeep Singh Jit Singh, Kamarulzaman Mat, and Md. Samsuzzaman, "An octagonal ring-shaped parasitic resonator based compact ultrawideband antenna for microwave imaging applications," Sensors, Vol. 20, No. 5, 1354, Mar. 2020.
doi:10.3390/s20051354

26. Ponnapalli, Venkata Lakshmi Narayana Phani, Shanumugam Karthikeyan, and Jammula Lakshmi Narayana, "A circular slotted shaped UWB monopole antenna for breast cancer detection," Progress In Electromagnetics Research Letters, Vol. 104, 57-65, 2022.

27. Sri, Pasumarthi Amala Vijaya and Ketavath Kumar Naik, "U-slotted elliptical shape patch antenna for UWB on-body communications," Progress In Electromagnetics Research Letters, Vol. 104, 77-85, 2022.

28. Salama, Gouda I., M. B. Abdelhalim, and Magdy Abd-elghany Zeid, "Experimental comparison of classifiers for breast cancer diagnosis," 2012 Seventh International Conference on Computer Engineering & Systems (ICCES), 180-185, Ain Shams Univ, Fac Engn, Nov. 2012.

29. Conceicao, R. C., H. Medeiros, M. O'Halloran, D. Rodriguez-Herrera, D. Flores-Tapia, and S. Pistorius, "Initial classification of breast tumour phantoms using a UWB radar prototype," 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), 720-723, IEEE, 2013.

30. Santorelli, Adam, Emily Porter, Evgeny Kirshin, Yi Jun Liu, and Milica Popovic, "Investigation of classifiers for tumor detection with an experimental time-domain breast screening system," Progress in Electromagnetics Research, Vol. 144, 45-57, 2014.
doi:10.2528/PIER13110709

31. Aydin, Emine Avsar and Mumie Kaya Keles, "UWB rectangular microstrip patch antenna design in matching liquid and evaluating the classification accuracy in data mining using random forest algorithm for breast cancer detection with microwave," Journal of Electrical Engineering & Technology, Vol. 14, No. 5, 2127-2136, Springer, Sep. 2019.
doi:10.1007/s42835-019-00205-x

32. Alshehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmud, and Z. Awang, "3D experimental detection and discrimination of malignant and benign breast tumor using nn-based uwb imaging system," Progress in Electromagnetics Research-pier, Vol. 116, 221-237, 2011.
doi:10.2528/PIER11022601

33. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd Ed., Artech House, 1996.