Vol. 144
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-07-10
Separating the Bulk and Surface Second Harmonic Quadrupolar Contribution in Inversion Symmetric Crystals
By
Progress In Electromagnetics Research C, Vol. 144, 199-205, 2024
Abstract
We apply the third-order susceptibility tensor generated by the Simplified Bond Hyperpolarizability Model (SBHM) to address the long standing challenges in distinguishing the bulk and surface quadrupolar second-harmonic-generation (SHG) contributions in diamond lattices, such as silicon, which exhibit bulk inversion symmetry. Assuming that the quadrupolar contribution originates from the interface gradient of the excited electric field, we demonstrate through symmetry considerations and numerical calculations for Si(001) and Si(111) facet orientations that it is not possible to separate the different quadrupolar contributions when the incoming light is incident normally. However, we show that such separation is achievable with oblique incidence. Furthermore, we propose a novel experimental design to measure the bulk and surface quadrupolar SHG contributions separately by introducing a semi-vicinal surface. Using numerical SBHM simulations, we show for the first time that this semi-vicinal setup can prove the existence of spatial dispersion, a nonlinear dipolar bulk effect recently proposed. This approach may lead to a better understanding of various nonlinear contributions in silicon and enable precise nonlinear surface monitoring.
Citation
Damián Zúiga-Avelar, Omar Palillero-Sandoval, Rosibel Carrada-Legaria, Muhammad Ahyad, Hendradi Hardhienata, and Adalberto Alejo-Molina, "Separating the Bulk and Surface Second Harmonic Quadrupolar Contribution in Inversion Symmetric Crystals," Progress In Electromagnetics Research C, Vol. 144, 199-205, 2024.
doi:10.2528/PIERC23101203
References

1. Franken, P. A., Alan E. Hill, C. W. Peters, and Gabriel Weinreich, "Generation of optical harmonics," Physical Review Letters, Vol. 7, No. 4, 118, 1961.

2. Maiman, T. H., "Stimulated optical radiation in ruby," Nature, Vol. 187, 493-494, 1960.

3. Bloembergen, Nicolaas and P. S. Pershan, "Light waves at the boundary of nonlinear media," Physical Review, Vol. 128, No. 2, 606, 1962.

4. Armstrong, J. A., N. Bloembergen, J. Ducuing, and Peter S. Pershan, "Interactions between light waves in a nonlinear dielectric," Physical Review, Vol. 127, No. 6, 1918, 1962.

5. Maker, P. D. and R. W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Physical Review, Vol. 137, No. 3A, A801, 1965.

6. Ward, J. F. and G. H. C. New, "Optical third harmonic generation in gases by a focused laser beam," Physical Review, Vol. 185, No. 1, 57, 1969.

7. Mendoza, Bernardo S. and W. Luis Mochán, "Polarizable-bond model for second-harmonic generation," Physical Review B, Vol. 55, No. 4, 2489, 1997.

8. Arzate, N. and Bernardo S. Mendoza, "Polarizable bond model for optical spectra of Si (100) reconstructed surfaces," Physical Review B, Vol. 63, No. 11, 113303, 2001.

9. Aspnes, D. E., "Bond models in linear and nonlinear optics," Ultrafast Nonlinear Imaging and Spectroscopy III, Vol. 9584, 21-31, 2015.

10. Powell, G. D., J.-F. Wang, and D. E. Aspnes, "Simplified bond-hyperpolarizability model of second harmonic generation," Physical Review B, Vol. 65, No. 20, 205320, 2002.

11. Wang, J.-F. T., G. D. Powell, R. S. Johnson, G. Lucovsky, and D. E. Aspnes, "Simplified bond-hyperpolarizability model of second harmonic generation: Application to Si-dielectric interfaces," Journal of Vacuum Science & Technology B, Vol. 20, No. 4, 1699-1705, 2002.

12. McGilp, J. F., "Using steps at the Si–SiO2 interface to test simple bond models of the optical second-harmonic response," Journal of Physics: Condensed Matter, Vol. 19, No. 1, 016006, 2007.

13. Hardhienata, Hendradi, Andrii Prylepa, David Stifter, and Kurt Hingerl, "Simplified bond-hyperpolarizability model of second-harmonic-generation in Si (111): theory and experiment," Journal of Physics: Conference Series, Vol. 423, No. 1, 012046, 2013.

14. Alejo-Molina, Adalberto, Hendradi Hardhienata, and Kurt Hingerl, "Simplified bond-hyperpolarizability model of second harmonic generation, group theory, and Neumann's principle," Journal of the Optical Society of America B, Vol. 31, No. 3, 526-533, 2014.

15. Alejo-Molina, Adalberto, Kurt Hingerl, and Hendradi Hardhienata, "Model of third harmonic generation and electric field induced optical second harmonic using simplified bond-hyperpolarizability model," Journal of the Optical Society of America B, Vol. 32, No. 4, 562-570, 2015.

16. Hardhienata, Hendradi, Adalberto Alejo-Molina, Cornelia Reitböck, Andrii Prylepa, David Stifter, and Kurt Hingerl, "Bulk dipolar contribution to second-harmonic generation in zincblende," Journal of the Optical Society of America B, Vol. 33, No. 2, 195-201, 2016.

17. Reitböck, Cornelia, David Stifter, Adalberto Alejo-Molina, Kurt Hingerl, and Hendradi Hardhienata, "Bulk quadrupole and interface dipole contribution for second harmonic generation in Si (111)," Journal of Optics, Vol. 18, No. 3, 035501, 2016.

18. Alejo-Molina, A., Hendradi Hardhienata, P. A. Márquez-Aguilar, and Kurt Hingerl, "Facet-dependent electric-field-induced second harmonic generation in silicon and zincblende," Journal of the Optical Society of America B, Vol. 34, No. 6, 1107-1114, 2017.

19. Reitböck, Cornelia, David Stifter, Adalberto Alejo-Molina, Hendradi Hardhienata, and Kurt Hingerl, "Nonlinear ellipsometry of Si (111) by second harmonic generation," Applied Surface Science, Vol. 421, 761-765, 2017.

20. Hardhienata, Hendradi, Tony Ibnu Sumaryada, Benedikt Pesendorfer, and Adalberto Alejo-Molina, "Bond model of second-and third-harmonic generation in body-and face-centered crystal structures," Advances in Materials Science and Engineering, Vol. 2018, No. 1, 7153247, 2018.

21. Hardhienata, Hendradi, Adalberto Alejo-Molina, Muhammad Danang Birowosuto, Amirreza Baghbanpourasl, and Husin Alatas, "Spatial dispersion contribution to second harmonic generation in inversion-symmetric materials," Physical Review B, Vol. 103, No. 12, 125410, 2021.

22. Hardhienata, Hendradi, Salim Faci, Adalberto Alejo-Molina, Mohammad Ryan Priatama, Husin Alatas, and Muhammad Danang Birowosuto, "Quo vadis nonlinear optics? An alternative and simple approach to third rank tensors in semiconductors," Symmetry, Vol. 14, No. 1, 127, 2022.

23. Chen, Wei-Ting, Ting-Yu Yen, Yang-Hao Hung, and Kuang-Yao Lo, "Structure of an in situ phosphorus-doped silicon ultrathin film analyzed using second harmonic generation and simplified bond-hyperpolarizability model," Nanomaterials, Vol. 12, No. 23, 4307, 2022.

24. Chen, Wei-Ting, Ting-Yu Yen, Yang-Hao Hung, Yu-Hsiang Huang, Shang-Jui Chiu, and Kuang-Yao Lo, "Second harmonic generation and simplified bond hyperpolarizability model analyses on the intermixing of Si/SiGe stacked multilayers for gate-all-around structure," Nanotechnology, Vol. 34, No. 14, 145702, 2023.

25. Bloembergen, Nicolaas, Richard K. Chang, S. S. Jha, and C. H. Lee, "Optical second-harmonic generation in reflection from media with inversion symmetry," Physical Review, Vol. 174, No. 3, 813, 1968.

26. Bauer, Klaus-Dieter, Martin Panholzer, and Kurt Hingerl, "Bulk quadrupole contribution to second harmonic generation from a microscopic response function," Physica Status Solidi (B), Vol. 253, No. 2, 234-240, 2016.

27. Bauer, Klaus-Dieter and Kurt Hingerl, "Bulk quadrupole contribution to second harmonic generation from classical oscillator model in silicon," Optics Express, Vol. 25, No. 22, 26567-26580, 2017.

28. Hardhienata, Hendradi, Ignu Priyadi, Husin Alatas, Muhammad Danang Birowosuto, and Philippe Coquet, "Bond model of second-harmonic generation in wurtzite ZnO (0002) structures with twin boundaries," Journal of the Optical Society of America B, Vol. 36, No. 4, 1127-1137, 2019.

29. Boyd, R. W., Nonlinear Optics, Academic Press, 2003.

30. Aspnes, David E. and A. A. Studna, "Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV," Physical Review B, Vol. 27, No. 2, 985, 1983.

31. Hardhienata, Hendradi, Hasan Al Kharfan, Salim Faci, Muhammad Danang Birowosuto, and Husin Alatas, "Bond model of second harmonic generation in tetragonal and orthorhombic perovskite structures," Journal of the Optical Society of America B, Vol. 40, No. 11, 2773-2781, 2023.