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ABSTRACT: We apply the third-order susceptibility tensor generated by the Simplified Bond Hyperpolarizability Model (SBHM) to
address the long standing challenges in distinguishing the bulk and surface quadrupolar second-harmonic-generation (SHG) contributions
in diamond lattices, such as silicon, which exhibit bulk inversion symmetry. Assuming that the quadrupolar contribution originates from
the interface gradient of the excited electric field, we demonstrate through symmetry considerations and numerical calculations for Si(001)
and Si(111) facet orientations that it is not possible to separate the different quadrupolar contributions when the incoming light is incident
normally. However, we show that such separation is achievable with oblique incidence. Furthermore, we propose a novel experimental
design to measure the bulk and surface quadrupolar SHG contributions separately by introducing a semi-vicinal surface. Using numerical
SBHM simulations, we show for the first time that this semi-vicinal setup can prove the existence of spatial dispersion, a nonlinear dipolar
bulk effect recently proposed. This approach may lead to a better understanding of various nonlinear contributions in silicon and enable
precise nonlinear surface monitoring.

1. INTRODUCTION

It is commonly accepted that the research in nonlinear op-
tics (NLO) began to flourish following the observation of

second-harmonic generation (SHG) by Franken et al. [1], just
several months after Maiman discovered the laser [2]. Theo-
retical work in SHG soon followed with seminal contributions
from Bloembergen and coworkers [3, 4]. Subsequently, studies
on third harmonic generation were published byMaker and Ter-
hune [5], and also by Ward and New [6], using different media.
Since then, contributions to the field of nonlinear optics have
grown exponentially.
Several methods for modeling SHG using bond models ex-

ist [7–9]. However, the approach for calculating the far-field
contribution proposed by Aspnes and his group [10, 11], called
the Simplified Bond-Hyperpolarizability Model (SBHM), has
significantly simplified NLO and reproduces experimental ro-
tational anisotropy SHG intensity very well for low symmetry
crystals without surface reconstruction, terraces, or other de-
fects. Nevertheless, it is well known that SBHM has some lim-
itations [12]. In 2013, Hingerl and his group explored SBHM
further, comparing the second-order susceptibilities obtained
by the model with group theory and tensor rotations. They ob-
tained the same susceptibility tensors found in crystallographic
tables and extended the model to other high-order phenom-
ena [13–19]. More recently, other research groups have con-
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tinued working with this model to explain NLO experimental
results in more complex materials and situations [20–24].
Studies on nonlinear phenomena originating from quadrupo-

lar sources began around the same time as the explanation
of harmonic generation due to dipolar contributions. Indeed,
such work was published by Bloembergen and coworkers [25],
where they derived expressions for the quadrupolar contribu-
tion from localized orbitals. In a more modern interpretation
of nonlinear polarization, Bauer et al. [26] distinguishes be-
tween quadrupolar contributions from the electric quadrupole
and the magnetic dipole moments, proposing a more general
form for total nonlinear polarization. More recently, quadrupo-
lar contributions to SHG have been studied from the viewpoint
of the microscopic response function [26], the classical oscilla-
tor model [27], as well as from the perspective of SBHM.
In this work, we apply the Simplified Bond-

Hyperpolarizability Model (SBHM) to discuss the issue
of separating the different contributions to second-harmonic
generation (SHG) in inversion-symmetric materials, such as
silicon, which has a diamond structure. In inversion-symmetric
materials, SHG from dipoles is forbidden due to parity sym-
metry. However, this symmetry is broken at the surface, so
the main SHG contribution from the surface is produced by
dipolar interactions, while inside the bulk, SHG is generated
by quadrupolar and spatial dispersion phenomena. The latter
contribution has been sufficiently discussed in [21].
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This manuscript is organized as follows. Section 2 pro-
vides a short but general description of the SBHM and how
it can be developed to account for the gradient of the excita-
tion electric field at the silicon interface, which generates the
SHG quadrupolar contribution. In Section 3, the susceptibility
fourth-rank tensor describing the quadrupolar contribution due
to the gradient of the fundamental electric field is discussed for
the Si(001) and Si(111) facet orientations. An effective tensor
is introduced to simplify the SHG tensorial analysis of the sil-
icon surface in the same directions. Finally, in Section 4, we
provide a conclusion of our work.

2. SBHM OF SHG BULK QUADRUPOLAR CONTRIBU-
TION
The original Simplified Bond-Hyperpolarizability Model
(SBHM) is based on three assumptions: (1) Dipoles oscillate
only in the atomic bond directions; (2) the same electric field
generates both a linear and nonlinear response that drives the
electrons harmonically and anharmonically; and (3) there is
no reconstruction on the surfaces or in the bulk. The latter
means that the orientations of the bonds are the same, but the
hyperpolarizabilities change if they are on the surface or in the
bulk. In more recent work, SHG from wurtzite semiconductors
with surface reconstructions, such as twin boundaries, has
been analyzed using the SBHM with good precision [28].
SBHM is an elegant way of restating the results of the har-

monic oscillator with the addition of anharmonic contributions,
providing a method to calculate the susceptibilities in crystals,
which are needed to determine the linear and nonlinear polar-
izations. It is well known that polarization can be expressed as
a power series in the field strength [29].
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where P⃗ (ω) is the linear polarization, P⃗ (2ω) the second har-

monic contribution, and P⃗ (3ω) the third harmonic contribution.

Here, E⃗(ω) is the fundamental electric field, whereas ↔
χ
(1)

is

known as the first-order susceptibility; ↔
χ
(2A)

describes the lin-
ear electro-optic (also called Kerr) effect (i.e., the modification
of the dielectric function/refractive index through a DC field

E⃗(0)); ↔
χ
(2)

corresponds to second harmonic generation; ↔
χ
(3A)

is the electric field induced second harmonic (EFISH) gener-

ation [18]; and finally, ↔
χ
(3)

is associated with third harmonic
generation [15]. If the electric field is described in a full vec-

torial way, then in general ↔
χ
(1)

, ↔
χ
(2)

and ↔
χ
(3)

are represented

through second-, third- and fourth-rank tensors, respectively.

We note that ↔
χ
(3A)

and ↔
χ
(3)

will not have the same values, but
due to symmetry the same tensorial form.
In particular, the quadrupolar contribution due to the ab-

sorption of the incoming electric field inside the material is
mathematically represented by the gradient of the electric field.
Thus, according to the SBHM, the SHG nonlinear polarization
is given by
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here comparing the two equalities in Eq. (2), it is clear that
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α3B b̂j ⊗ b̂j ⊗ b̂j ⊗ b̂j
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where ↔
χ
(3B)

is the susceptibility fourth-rank tensor of the third
order related to SHG; the “b̂js” are the unitary vectors in the
direction of the atomic bonds; α3B is the second order hyper-
polarizability; V is the volume of the conventional cell. More-
over, Eq. (2) can be rewritten in terms of the components as:

Pi (2ω) = χijklEj∇kEl (4)

where ∇k denotes the electric field gradient inside the mate-
rial. Usually, the experimental method for determining the in-
tensity variations of the second harmonic signal that originates
from the surface is “Rotational Anisotropy Second Harmonic
Generation” (RASHG). This method involves rotating the crys-
tal around the surface normal (typically labeled as z-axis) and
is denoted as the azimuthal rotating angle ϕ. In this way, the
generated nonlinear intensity has an azimuthal dependence and
should be included in the nonlinear polarization via the direct
vector product of the atomic covalent bond unit vectors, as fol-
lows:

↔
χ
(3B)

=
1

V

4∑
j=1

[
α3B

{
R(z) (ϕ)·b̂j

}
⊗
{
R(z) (ϕ)·b̂j

}

⊗
{
R(z) (ϕ) · b̂j

}
⊗

{
R(z) (ϕ) · b̂j

}]
(5)

where R(z) is a rotation matrix around the z-axis. On the other
hand, the definition of the atomic bond unit vectors depends on
the crystal direction. In the next section, we will discuss these
vectors for the two main facet orientations in silicon namely
Si(001) and Si(111).
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3. SUSCEPTIBILITY TENSORS FOR THE SHG
QUADRUPOLAR CONTRIBUTION TO THE BULK
3.1. Si(001) Facet
For a Si(001) facet orientation SBHM only requires four bond
unit vectors which have the following mathematical expres-
sions [16]:
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(6)

where β = 2 arccos ( 1√
3
) ≈ 109.47◦, is the angle between

the atomic bonds. Thus, according to Eq. (5) the sus-
ceptibility tensor for the quadrupolar contribution will be:
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According to the SBHM, this is the general tensor describ-
ing the third order susceptibility which looks very complicated
However, choosing a particular azimuthal rotation will simplify
it. For example, if we evaluate the angle β and taking ϕ = π/4
in Eq. (7) yields
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, (8)

We now obtain a simplified version of the fourth-rank tensor
described by only one independent parameter which is the bulk
quadrupolar hyperpolarizability α3B .
Alternatively, if we apply the electric field gradient in Eq. (4)

we will obtain [17]:

Pi (2ω) = χijklEj (−icκk)El (9)

where c is a constant, and i =
√
−1 and κk is the component of

the incident wave vector, inside the material. Thus, for the case
of normal incidence κ⃗ = −k̂. Hence, κ⃗ only has a component
in the z direction and then κz = 1. When this term is contracted
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with the tensor, the results is

↔
χ
(3B)

eff (001) =
8icα3B
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which has a similar form to the tensor that describes the surface
in the Si(001) direction and corresponds to a C2v point-group
symmetry [14]. This implies that when the gradient is normal to
the surface, the effective third-rank tensor after contracting the
result with the field gradient is identical to the nonlinear suscep-
tibility that describes the surface of the crystal. The same result
is obtained for the Electric-Field-Induced Second-Harmonic-
Generation (EFISH) case when the DC field is in the same di-
rection as that of incoming light that is directed normal to the
surface [18]. Therefore, it is very difficult to separate the nor-
mal contribution of the quadrupolar SHG signal with the SHG
contribution originating from the silicon surface. However, for
an oblique incoming light incidence the case is different. Due to
Snell’s law, differences in the surface and bulk refractive index
will result in a slightly different light propagation angle.

3.2. Si(111) Facet

Here we are going to generate the third order susceptibility ten-
sor for a Si(111) facet orientation which according to the SBHM

FIGURE 1. Proposal for separating contributions from the surface and
bulk to SHG.

has the corresponding bond unit vectors [10]:
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using Eq. (5), evaluating the angle β, and fixing ϕ = π/2, the
susceptibility tensor for the quadrupolar contribution in the di-
rection Si(111) is
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, (12)

In analogy with the previous case, we can now contract this ten-
sor Eq. (12) with the wavevector inside the material and normal
to the surface, this is, κ⃗ = −k̂. Therefore
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(3B)
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4icα3B
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which is an effective third-rank tensor belonging to the C3v

point-group symmetry. This result is similar to our previous
analysis, in the sense that the Si(111) surface also has a C3v

symmetry and the effective third-rank tensor takes a similar
form as in EFISH when the DC field is applied normal to the
surface [18]. The physical mechanisms that generate SHG are
very different from those of surface, EFISH, and the gradient of
the excited electric field, but the break of symmetry in the crys-
tal occurs in the same direction in all these cases. The same
analogy should apply to other nonlinear phenomena, such as
bulk dipoles due to the absorption of the incoming electric field
and spatial dispersion [21]. Therefore, mathematically, there
is no difference because the tensor that describes the bulk of
the crystal contains all the information about the symmetries
present in that crystal. When the contraction of the full ten-
sor with the vector representing the break of symmetry occurs,
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FIGURE 2. SBHM simulation of dipole and quadrupole SHG contribution for a Si(111) incidence = outgoing angle = 45◦.

all the other symmetries disappear, and only the correspond-
ing subset of symmetries remains, which is not affected by the
break of symmetry in this particular direction.
Finally, we propose an experimental design to further dis-

tinguish the surface and bulk SHG sources, assuming a non-
normal incidence-outgoing angle. The key here is generating
a semi-vicinal surface where the incoming fundamental light
is directed towards the flat surface and generating an outgoing
light at a similar angle based on the law of reflection. However,
the SHG light that propagates from within the bulk will be di-
rected towards the vicinal surface where there is no incoming
light. The interesting feature of such a surface geometry is the
possibility to detect both the surface and bulk SHG using sep-
arate detectors placed at different angles. This idea is sketched
in Fig. 1.
As can be seen in Fig. 1, the green arrow almost superim-

posed over the red arrow denotes the direction of the surface
nonlinear contribution whereas the green arrow in the vicinal
cut denotes the direction of the bulk nonlinear contributions,
and we encourage experimental RASHG measurements using
this design.
Figures 2 and 3 are the results of SBHM simulations for a

Si(111) facet two different SHG outgoing angles, one at 45◦

(flat surface outgoing) and the other at 9.8◦ (vicinal surface out-
going), with a vicinal angle of 5◦. We take as an example the
Si(111) facet since for the Si(001) facet, our SBHM simula-
tion provides similar patterns for the flat and vicinal outgoing
angles only differing in their arbitrary intensity. The angle of
9.8◦ is derived based on geometrical calculations and Snell’s
law, considering the refractive index of silicon as described in
the reference by Aspnes and Studna [30]. The differences be-
tween the angles are more apparent in the pp SHG polarization
where for a flat surface the SHG surface contribution is three-
fold whereas for the vicinal surface the SHG contribution is
from within the bulk and is given by a sixfold intensity fea-
ture. Thus in Fig. 3, the dipole contributions must be attributed
to spatial dispersion. If the RASHG experiment results align
with the SBHM predictions in Fig. 2 and Fig. 3, it indicates the
presence of spatial dispersion which is simply a bulk dipolar
contribution due to the decaying electric field. A precise high-
small peak ratio value using RASHG experiment will further-
more determine the ratio of the spatial dispersion and quadrupo-
lar contributions. Therefore, using this particular semi-vicinal
surface allows us to convincingly distinguish between bulk and
surface contributions for the first time as well as obtain themag-
nitude of these contributions and solve the longstanding debate
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FIGURE 3. SBHM simulation of dipole and quadrupole SHG contribution for a Si(111) incidence = 45◦ outgoing angle = 9.81◦.

of the various SHG sources in silicon. Finally, we would like
to emphasize that such a semi-vicinal surface SBHM analysis
can also be performed to measure the surface and bulk contri-
bution of other semiconductors such as GaAs, ZnO, and even
perovskite structures whose bond vectors have already been de-
termined in other works, e.g., see [22, 28, 31]. We invite exper-
imenters to test our RASHG SHG intensity prediction.

4. CONCLUSIONS
We have investigated the third-order nonlinear phenomenon in-
volving the bulk quadrupolar contribution to second harmonic
generation (SHG) in centrosymmetric crystals for Si(001) and
Si(111) facet orientations. Our analysis of the nonlinear tensor
shows that for an incoming light beam normal to the surface,
the generated quadrupolar response is identical to that produced
by the surface when the contribution of the electric field gradi-
ent is included. This makes it difficult to separately identify
surface and bulk SHG contributions. In other words, it is not
possible to distinguish the bulk contribution from the surface-
generated contribution under normal incidence. However, for

a non-normal (oblique) incidence light beam, it is possible to
isolate the quadrupolar contribution from the SHG signal orig-
inating from the crystal surface and the SHG signal generated
within the bulk. Specifically, if Fresnel’s coefficients are sig-
nificant, creating a vicinal cut in the crystal with the excitation
field impinging near the edge of the cut allows for differenti-
ation of these two sources. Our numerical simulations for the
semi-vicinal Si(111) facet with a vicinal angle of 5◦ show that
the RASHG SHG intensity profiles from the surface and bulk
can be distinguished, especially for the pp-SHG polarization.
Additionally, these simulations enable us to determine the mag-
nitude of the various SHG sources, providing a more compre-
hensive understanding of the contributions from both surface
and bulk origins.
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