Vol. 138
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-10-07
A Printed Monopole Antenna for Next Generation Internet of Things: Narrow Band Internet of Things (Nb -IoT )
By
Progress In Electromagnetics Research C, Vol. 138, 117-129, 2023
Abstract
This article introduces a planar monopole antenna specially designed for NB-IoT module devices. The preferred choice for Internet of Things (IoT) technology is the Narrow-Band Internet of Things (NB-IoT) due to its extensive coverage and low power consumption. NB-IoT is specifically designed for IoT applications. A circular patch antenna with dimensions of 30 mm×60 mm is fabricated, which is specifically tailored for the NB-IoT module. The antenna dimensions are meticulously chosen to ensure compatibility with the device module, considering the NB-IoT B1 (2100) and B3 (1800) frequency bands. Among various patch shapes, the circular design is preferred for its advantages over hexagon and square patches. The desired antenna configuration combines a square-slotted patch with a monopole ground plane, and it offers several advantages in terms of design simplicity, compact size, and characteristics such as broad bandwidth, acceptable gain, and high radiation efficiency. The design process employs HFSS Software and utilizes an FR4 substrate of 1.6 mm thickness. Operating at resonance frequencies of 2.1 GHz and 1.8 GHz, the antenna covers a broad frequency spectrum of 1100 MHz (1.5 to 2.6 GHz) with a fractional bandwidth of 53.65%. The suggested antenna achieves a peak gain of 3.3 dB and maximum radiation efficiency of 96% within its operating band. It exhibits an omnidirectional radiation pattern, meeting the specific requirements of NB-IoT technologies. Experimental measurements of the fabricated antenna validate the results achieved from the simulated data.
Citation
Sneha Bhardwaj, Praveen Kumar Malik, Tanvir Islam, Anita Gehlot, Sudipta Das, and Sivaji Asha, "A Printed Monopole Antenna for Next Generation Internet of Things: Narrow Band Internet of Things (Nb -IoT )," Progress In Electromagnetics Research C, Vol. 138, 117-129, 2023.
doi:10.2528/PIERC23090202
References

1. HUAWEI "NB-IoT enables new business opportunities,", July 17, 2017, Available: http://www.huawei.com/minisite/IoT/img/nb_IoT_whitepaper_en.pdf.
doi:10.1016/j.cie.2022.108572

2. Sneha, P. K. Malik, N. Bilandi, and A. Gupta, "Narrow band-IoT and long-range technology of IoT smart communication: Designs and challenges," Computers & Industrial Engineering, Vol. 172, 108572, 2022.
doi:10.1016/j.comnet.2020.107209

3. Rastogi, E., N. Saxena, A. Roy, and D. R. Shin, "Narrowband internet of things: A comprehensive study," Computer Networks, Vol. 173, 107209, 2020.
doi:10.1016/j.icte.2017.12.005

4. Mekki, K., E. Bajic, F. Chaxel, and F. Meyer, "A comparative study of LPWAN technologies for large-scale IoT deployment," ICT Express, Vol. 5, 1-7, 2019.
doi:10.1007/s10776-020-00482-8

5. Malik, P. K., D. S. Wadhwa, and J. S. Khinda, "A survey of device to device and cooperative communication for the future cellular networks," International Journal of Wireless Information Networks, Vol. 27, 411-432, 2020.
doi:10.1109/ICCAKM46823.2020.9051554

6. Gupta, N. P., P. K. Malik, and B. S. Ram, "A review on methods and systems for early breast cancer detection," International Conference on Computation, Automation and Knowledge Management (ICCAKM), 42-46, 2020.
doi:10.1007/s11277-021-09218-0

7. Riaz, S., M. Khan, U. Javed, et al. "A miniaturized frequency reconfigurable patch antenna for IoT applications," Wireless Pers. Commun., Vol. 123, 1871-1881, 2022.
doi:10.1007/s11277-021-08837-x

8. Jeyakumar, P., P. Muthuchidambaranathan, and S. Shrinidhi, "A novel two port high isolation dual-polarized multiband sub-6 GHz MIMO antenna for IoT connected devices," Wireless Pers. Commun., Vol. 121, 2569-2587, 2021.
doi:10.2528/PIERC22051805

9. Bukhari, B. and G. M. Rather, "Multiband compact MIMO antenna for cognitive radio, IoT and 5G New radio sub 6 GHz applications," Progress In Electromagnetics Research C, Vol. 121, 265-279, 2022.
doi:10.2528/PIER18060804

10. Raad, H. K., "An UWB antenna array for flexible IoT wireless systems," Progress In Electromagnetics Research, Vol. 162, 109-121, 2018.
doi:10.1109/IEEECONF35879.2020.9330268

11. Abdallah, M., A. P. Freundorfer, and Y. M. M. Antar, "A planar low-cost electrically small antenna for NB-IoT sensors," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 593-594, Montreal, QC, Canada, 2020.
doi:10.1109/R10-HTC54060.2022.9929726

12. Hossen, M. S. and S. Noman, "On the development of multiband NB-IoT antenna for low-power wide area network terminal," 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC), 414-418, Hyderabad, India, 2022.
doi:10.1109/OJAP.2021.3073104

13. Santamaria, L., F. Ferrero, R. Staraj, L. Lizzi, and , "Electronically pattern reconfigurable antenna for IoT applications," IEEE Open Journal of Antennas and Propagation, Vol. 2, 546-554, 2021.

14. Tangjitjetsada, M., T. Suangun, W. Chanwattanapong, C. Mahatthanajatuphat, K. Phimthai, and P. Akkaraekthalin, "A multiband tri-branch monopole antenna base on step impedance technique for WLAN, WiMAX, 5G technology, and IoT application," 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 1-4, Nakhon Phanom, Thailand, 2023.
doi:10.1109/LAWP.2022.3230827

15. Al-Omari, M., H. Attia, K. K. Qureshi, and S. I. M. Sheikh, "Design of frequency-reconfigurable antenna on dielectric and magnetic metamaterial composite substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 4, 943-947, April 2023.
doi:10.1088/1748-0221/15/02/P02021

16. Lakrit, S., S. Das, B. T. P. Madhav, and K. Vasu Babu, "An octagonal star-shaped flexible UWB antenna with band-notched characteristics for WLAN applications," Journal of Instrumentation, Vol. 15, P02021, 2020.
doi:10.18280/ts.400231

17. Sau, P. C., P. K. Sharma, T. J. V. S. Rao, E. K. Kumari, T. V. N. L. Aswini, S. Jindal, and D. Sharma, "A kagome crest fractal optimized quad-band antenna for wireless applications," Traitement du Signal, Vol. 40, No. 2, 719-726, 2023.
doi:10.18280/ts.370412

18. El Yassini, A., M. A. Jallal, S. Ibnyaich, A. Zeroual, and S. Chabaa, "A miniaturized CPW-fed reconfigurable antenna with a single-dual band and an asymmetric ground plane for switchable band wireless applications," Traitement du Signal, Vol. 37, No. 4, 633-638, 2020.
doi:10.1109/TAP.2019.2957720

19. Li, Y., Z. Zhao, Z. Tang, and Y. Yin, "Differentially fed, dual-band dual-polarized filtering antenna with high selectivity for 5G sub-6 GHz base station applications," IEEE Transactions on Antennas and Propagation, Vol. 68, 3231-3236, 2020.
doi:10.13164/re.2018.0085

20. Darimireddy, N. K., R. Ramana Reddy, and A. Mallikarjuna Prasad, "Asymmetric triangular semi-elliptic slotted patch antennas for wireless applications," Radioengineering, Vol. 27, 85-93, 2018.
doi:10.2528/PIERC16092101

21. Sharma, M., Y. K. Awasthi, and H. Singh, "Design of CPW-fed high rejection triple band-notch UWB antenna on silicon Substrate with diverse wireless applications," Progress In Electromagnetics Research C, Vol. 74, 19-30, 2017.
doi:10.1109/MAP.2017.2658346

22. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [Wireless Corner]," IEEE Antennas and Propagation Magazine, Vol. 59, 162-170, 2017.

23. Sneha, P., K. Malik, and A. Alkhayyat, "Correction to: A shared patch MIMO antenna for NB-IoT applications," Low Power Architectures for IoT Applications. Springer Tracts in Electrical and Electronics Engineering, D. K. Sharma, R. Sharma, G. Jeon, Z. Polkowski, eds., Springer, Singapore, 2023.
doi:10.1002/mop.31420

24. Asadpor, L. and M. Rezvani, "Multiband microstrip MIMO antenna with CSRR loaded for GSM and LTE applications," Microwave and Optical Technology Letters, Vol. 60, 3076-3080, 2018.
doi:10.1002/mmce.21222

25. Chouhan, S., D. K. Panda, M. Gupta, and S. Singhal, "Meander line MIMO antenna for 5.8 GHz WLAN application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 4, e21222, 2018.
doi:10.1002/mop.31652

26. Mohammad Saadh, A. W., R. Poonkuzhali, and T. Ali, "A miniaturized single-layered branched multiple-input multiple-output antenna for WLAN/WiMAX/INSAT applications," Microwave and Optical Technology Letters, Vol. 61, 1058-1064, 2019.
doi:10.1016/j.aeue.2020.153451

27. Wang, M., L. Yang, and Y. Shi, "A dual-port microstrip rectenna for wireless energy harvest at LTE band," AEU --- International Journal of Electronics and Communications, Vol. 126, 153451, 2020.
doi:doi:10.1016/j.aeue.2020.153451

28. Sneha, et al., "A metamaterial based monopole antenna for satellite based navigation applications," International Journal of Intelligent Communication, Computing, and Networks, Vol. 1, 10-14, 2020.
doi:10.3390/electronics10212612

29. Singh, H., N. Mittal, A. Gupta, Y. Kumar, M. Wozniak, and A. Waheed, "Metamaterial integrated folded dipole antenna with low SAR for 4G, 5G, and NB-IoT applications," Electronics, Vol. 10, No. 21, 2612, 2021.
doi:doi:10.3390/electronics10212612

30. Pourghorban Saghati, A., M. Azarmanesh, and R. Zaker, "A novel switchable single- and multifrequency triple-slot antenna for 2.4-GHz bluetooth, 3.5-GHz WiMax, and 5.8-GHz WLAN," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 534-537, 2010.
doi:doi:10.1109/LAWP.2010.2051401

31. Kulkarni, J., "Multi-band printed monopole antenna conforming bandwidth requirement of GSM/WLAN/WiMAX standards," Progress In Electromagnetics Research Letters, Vol. 91, 59-66, 2020.
doi:doi:10.2528/PIERL20032104

32. Birwal, A., S. Singh, B. K. Kanaujia, and S. Kumar, "Broadband CPW-fed circularly polarized antenna for IoT-based navigation system," International Journal of Microwave and Wireless Technologies, Vol. 11, 835-843, 2019.
doi:10.1017/S1759078719000461

33. Birwal, A., S. Singh, B. K. Kanaujia, S. Kumar, and , "Broadband CPW-fed circularly polarized antenna for IoT-based navigation system," International Journal of Microwave and Wireless Technologies, Vol. 11, 835-843, 2019.
doi:10.4018/978-1-7998-9315-8.ch004

34. Raveendra, M., U. Saravanakumar, V. Choppa, N. V. Palivela, and R. Teja, "Design and analysis of a tunable rectangular microstrip slot antenna for narrow band internet of things applications at 1800 MHz," Antenna Design for Narrowband IoT, 43-57, January 2022.
doi:10.3390/electronics11071074

35. Hussain, R., S. I. Alhuwaimel, A. M. Algarni, K. Aljaloud, and N. Hussain, "A compact sub-GHz wide tunable antenna design for IoT applications," Electronics, Vol. 11, No. 7, 1074, 2022.
doi:10.3390/electronics10222766

36. Abdulkawi, W. M., A. F. A. Sheta, I. Elsha ey, and M. A. Alkanhal, "Design of low-profile single- and dual-band antennas for IoT applications," Electronics, Vol. 10, No. 22, 2766, 2021.

37. Sneha, P., K. Malik, and A. Gehlot, "A key-shaped ultra-wideband antenna for IoT applications," 2023 International Conference on Artificial Intelligence and Smart Communication (AISC), 504-508, Greater Noida, India, 2023.
doi:10.3390/mi12030269

38. Althuwayb, A. A., M. Alibakhshikenari, B. S. Virdee, P. Shukla, and E. Limiti, "Realizing UWB antenna array with dual and wide rejection bands using metamaterial and electromagnetic bandgaps techniques," Micromachines, Vol. 12, No. 3, 269, Basel, 2021.

39. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley, Hoboken, NJ, 2005.
doi:10.1109/ITNEC48623.2020.9084751

40. Zhuo, L., H. Han, X. Shen, and H. Zhao, "A U-shaped wide-slot dual-band broadband NB-IoT antenna with a rectangular tuning stub," 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 123-128, 2020.