Vol. 139
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-12-03
PMSWG Parameter Identification Method Based on Improved Operator Genetic Algorithm
By
Progress In Electromagnetics Research C, Vol. 139, 67-77, 2024
Abstract
Permanent Magnet Synchronous Wind Generator (PMSWG) parameter identification method with improved operator genetic algorithm is proposed for the influence of perturbations caused by mechanical parameter changes on the dynamic performance of motor speed control system. Firstly, current with id=0 and id≠0 are injected into axis d respectively to design the fitness function. Through quantum coding, the genetic algorithm can obtain better population and fitness in the early stage, and find better solutions in the search space. At the same time, the cross method of two random numbers is used to make the cross variable not restricted in a range, which enhances the global search ability. Finally, the update strategy of hybrid mutation composed of Gaussian mutation and Cauchy mutation is introduced to ensure the global search ability of the algorithm, and the accuracy of the optimization results is improved. Experiments show that the proposed method avoids local optimization and achieves global optimization, which can further improve the convergence speed and identification accuracy of the algorithm.
Citation
Zhun Cheng, Chao Zhang, and Yang Zhang, "PMSWG Parameter Identification Method Based on Improved Operator Genetic Algorithm," Progress In Electromagnetics Research C, Vol. 139, 67-77, 2024.
doi:10.2528/PIERC23081801
References

1. Singh, Navdeep and Vineeta Agrawal, "A review on power quality enhanced converter of permanent magnet synchronous wind generator," International Review of Electrical Engineering, Vol. 8, No. 6, 1681-1693, 2013.

2. Hsiao, Chun-Yu, Sheng-Nian Yeh, and Jonq-Chin Hwang, "Design of high performance permanent-magnet synchronous wind generators," Energies, Vol. 7, No. 11, 7105-7124, Nov. 2014.
doi:10.3390/en7117105

3. Xia, Yuanye, Khaled H. Ahmed, and Barry W. Williams, "A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system," IEEE Transactions on Power Electronics, Vol. 26, No. 12, 3609-3620, Dec. 2011.
doi:10.1109/TPEL.2011.2162251

4. Wu, Ziping, Wenzhong Gao, Jianhui Wang, and Shusheng Gu, "A coordinated primary frequency regulation from permanent magnet synchronous wind turbine generation," 2012 IEEE Power Electronics and Machines in Wind Applications (PEMWA), Denver, Co, Jul. 2012.

5. Zhang, Yanqing, Zhonggang Yin, Xiangdong Sun, and Yanru Zhong, "On-line identification methods of parameters for permanent magnet synchronous motors based on cascade MRAS," 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 345-350, Seoul, South Korea, Jun. 2015.

6. Ma, X. and C. Bi, "A technology for online parameter identification of permanent magnet synchronous motor," CES Transactions on Electrical Machines and Systems, Vol. 4, No. 3, 237-242, 2020.

7. Inoue, Yukinori, Yasunori Kawaguchi, Shigeo Morimoto, and Masayuki Sanada, "Performance improvement of sensorless IPMSM drives in a low-speed region using online parameter identification," IEEE Transactions on Industry Applications, Vol. 47, No. 2, 798-804, Mar.-Apr. 2011.
doi:10.1109/TIA.2010.2101994

8. Wang, Gaolin, Ying Wang, Jiangbo Qi, Ronggang Ni, Wei Chen, and Dianguo Xu, "Offline inductance identification of PMSM with adaptive inverter nonlinearity compensation," 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2438-2444, Seoul, South Korea, Jun. 2015.

9. Zhang, Qiushi and Ying Fan, "The online parameter identification method of permanent magnet synchronous machine under low-speed region considering the inverter nonlinearity," Energies, Vol. 15, No. 12, 4314, Jun. 2022.
doi:10.3390/en15124314

10. Deng, Wenzhe and Shuguang Zuo, "Electromagnetic vibration and noise of the permanent-magnet synchronous motors for electric vehicles: An overview," IEEE Transactions on Transportation Electrification, Vol. 5, No. 1, 59-70, Mar. 2019.
doi:10.1109/TTE.2018.2875481

11. Tang, Jing, Yongheng Yang, Frede Blaabjerg, Jie Chen, Lijun Diao, and Zhigang Liu, "Parameter identification of inverter-fed induction motors: A review," Energies, Vol. 11, No. 9, 2194, Sep. 2018.
doi:10.3390/en11092194

12. Zhang, Y., T. Y. Ji, M. S. Li, and Q. H. Wu, "Application of discrete wavelet transform for identification of induction motor stator inter-turn short circuit," 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), Bangkok, Thailand, Nov. 2015.

13. Sokolov, Emil and Miho Mihov, "Parameter estimation of an interior permanent magnet synchronous motor," 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, Jun. 2019.
doi:10.1109/elma.2019.8771686

14. Boileau, Thierry, Nicolas Leboeuf, Babak Nahid-Mobarakeh, and Farid Meibody-Tabar, "Online identification of PMSM parameters: Parameter identifiability and estimator comparative study," IEEE Transactions on Industry Applications, Vol. 47, No. 4, 1944-1957, Jul.-Aug. 2011.
doi:10.1109/TIA.2011.2155010

15. Nahid-Mobarakeh, B., F. Meibody-Tabar, and F. M. Sargos, "Mechanical sensorless control of PMSM with online estimation of stator resistance," IEEE Transactions on Industry Applications, Vol. 40, No. 2, 457-471, Mar.-Apr. 2004.
doi:10.1109/TIA.2004.824490

16. Sun, Pengkun, Qiongxuan Ge, Bo Zhang, and Xiaoxin Wang, "Sensorless control technique of PMSM based on RLS on-line parameter identification," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 1670-1673, Jeju, South Korea, Oct. 2018.

17. Li, Mingwei, Kailin Lv, Cheng Wen, Qiankai Zhao, Xingqiao Zhao, and Xin Wang, "Sensorless control of permanent magnet synchronous linear motor based on sliding mode variable structure MRAS flux observation," Progress In Electromagnetics Research Letters, Vol. 101, 89-97, 2021.

18. Ouyang, Yanjing and Yufei Dou, "Speed sensorless control of PMSM based on MRAS parameter identification," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 1618-1622, Jeju, South Korea, Oct. 2018.

19. Jiang, Xiaoliang, Pindong Sun, and Z. Q. Zhu, "Modeling and simulation of parameter identification for PMSM based on EKF," 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, 345-348, Changchun, China, 2010.

20. Xiao, Qianghui, Kaixian Liao, Chuandong Shi, and Yang Zhang, "Parameter identification of direct‐drive permanent magnet synchronous generator based on EDMPSO‐EKF," IET Renewable Power Generation, Vol. 16, No. 5, 1073-1086, Apr. 2022.
doi:10.1049/rpg2.12415

21. Fortes, M. Z., V. H. Ferreira, and A. P. F. Coelho, "The induction motor parameter estimation using genetic algorithm," IEEE Latin America Transactions, Vol. 11, No. 5, 1273-1278, Sep. 2013.
doi:10.1109/TLA.2013.6684404

22. Jafar-Zanjani, Samad, Sandeep Inampudi, and Hossein Mosallaei, "Adaptive genetic algorithm for optical metasurfaces design," Scientific Reports, Vol. 8, 11040, Jul. 2018.
doi:10.1038/s41598-018-29275-z

23. Dong, Quan-rui, Chen Tao, Shi-jie Gao, Yong-kai Liu, Jian-qiang Zhang, and Hao Wu, "Identification of opto-electronic fine tracking systems based on an improved differential evolution algorithm," Chinese Optics, Vol. 13, No. 6, 1314-1323, Dec. 2020.
doi:10.37188/CO.2020-0021