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ABSTRACT: PermanentMagnet SynchronousWindGenerator (PMSWG) parameter identificationmethodwith improved operator genetic
algorithm is proposed for the influence of perturbations caused by mechanical parameter changes on the dynamic performance of motor
speed control system. Firstly, current with id = 0 and id ̸= 0 are injected into axis d respectively to design the fitness function. Through
quantum coding, the genetic algorithm can obtain better population and fitness in the early stage, and find better solutions in the search
space. At the same time, the cross method of two random numbers is used to make the cross variable not restricted in a range, which
enhances the global search ability. Finally, the update strategy of hybrid mutation composed of Gaussian mutation and Cauchy mutation
is introduced to ensure the global search ability of the algorithm, and the accuracy of the optimization results is improved. Experiments
show that the proposed method avoids local optimization and achieves global optimization, which can further improve the convergence
speed and identification accuracy of the algorithm.

1. INTRODUCTION

PMSWG has the advantages of high efficiency, high relia-
bility, small size, and light weight, which is widely used

in wind power generation. The design of PMSWG high per-
formance controller is related to the generator parameters, but
the generator parameters are subject to temperature, load vari-
ation, voltage fluctuations, friction and mechanical vibrations,
and magnetic field drift, resulting in degraded control perfor-
mance [1–4]. For such issues, scholars have done a lot of re-
search and proposed different parameter identification meth-
ods [5, 6].
According to the identification time in system operation, pa-

rameter identification methods are divided into offline identi-
fication and online identification [7, 8]. Offline identification
method can be applied to different types of motors, but it is nec-
essary to choose the appropriate method according to the actual
situation of motors [9]. In [10], modal analysis is adopted to
analyze the torsional vibration frequency response of the mo-
tor, find out the sound source of the motor, and obtain the vi-
bration mode of the motor. By studying modal factors in de-
tail, a mathematical method for calculating motor noise is pre-
sented. In [11], in single-phaseAC experiment and no-load test,
to reduce errors, discrete Fourier transform is adopted for signal
processing to obtain the frequency components and amplitude
of current and voltage signals, and then identify the stator ro-
tor resistance, stator rotor leakage, and mutual inductance of
the motor. Although the parameters can be accurately identi-
fied, the calculation is tedious. In [12] according to the charac-
teristics of the stator current harmonic component change un-
der the stator revolution condition, the sixth approximate co-
efficient is decomposed to construct the stator revolution short
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circuit, and a method based on discrete wavelet transform is
proposed. In [13], finite element analysis was used to identify
the field inductance and synchronous inductance of permanent
magnet synchronous motor under rated load and overload. This
method obtained electrical parameter identification values by
solving multiple differential equations simultaneously, which
was time-consuming and inefficient.
Online identification can collect and analyze the operating

parameters of the motor in real-time, provide timely feedback
on the status and performance index of the motor, and facili-
tate real-time monitoring and control of the motor [14, 15]. At
present, the main methods for online identification of motor pa-
rameters are recursive least squares (RLS), extended Kalman
filter (EKF), model reference adaptive (MRAS), and artificial
intelligence algorithms. Reference [16] proposed a recursive
least squares method for parameter identification based on LS,
analyzed the factors affecting the identification accuracy, and
the identification results were able to approach the actual val-
ues, but the increase in the amount of data led to the saturation
of the data, which made the accuracy of the identification de-
crease. In [17, 18], a model reference based adaptive identifi-
cation method is proposed, which is fast and easy to implement
after improving the MRAS algorithm, but faces the problem of
adaptive law selection, which has a great impact on the results
of parameter identification, and the correct convergence speed
of the parameters depends on the initial values of the param-
eters. References [19, 20] proposed an extended Kalman filter
(EKF)-based discrimination method, which is a recursive filter-
ing method, and although it improves the accuracy of the sys-
tem and solves the noise sensitivity problem, the computation
process requires a large number of matrix calculations, result-
ing in slow convergence. In [21], a method for determining
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the electrical parameters of a three-phase asynchronous motor
using a genetic algorithm technique was proposed, which suc-
cessfully estimated the static current curve and the electrome-
chanical conjugate current curve. In [22], an improved adaptive
genetic algorithm was used for motor parameter identification,
how to overcome the shortcomings of traditional genetic algo-
rithm (GA), such as slow evolution and long computation time,
when solving efficient electrical engineering problems. In [23],
to solve the problem that the basic GA is prone to local extreme
values, the improved adaptive GA is applied to model parame-
ter identification, and polynomial fitting is used to describe the
relationship between motor position and identification param-
eters.
Considering the aforementioned issues, this paper presents a

parameter identification method for PMSWG based on genetic
algorithmwith improved operators. The remainder of the paper
is organized as follows. Section 2 designs the identification
equations. Section 3 provides improvements the operators of
the genetic algorithm. Then, Section 4 shows the experimental
results on the RT-LAB platform to verify the correctness of the
theoretical analysis and simulation analysis. Finally, the article
draws conclusions in Section 5.

2. DESIGN OF THE PMSWG IDENTIFICATION EQUA-
TION

2.1. Mathematical Model of PMSWG
ud = Rid + Ld

did
dt − LqPωiq

uq = Riq + Lq
diq
dt + LdPωid + φfPω

Te =
3
2P [φf iq + (Ld − Lq) idiq]

J dω
dt = TL −Bω − Te

(1)

where P is the polar logarithm; ω is the mechanical angular ve-
locity; ud, uq , id, iq are the dq axis stator voltage and current;
R, φf , Ld, Lq represent the motor winding resistance, motor
magnetic chain, d axis and q axis inductance, respectively; me-
chanical parametersB, J are the coefficient of viscous friction,
rotational inertia, respectively; Te is the electromagnetic torque;
TL is the load torque.
Under no-load condition, that is, TL = 0, id = 0, it can be

simplified as:

J
dω

dt
= −3

2
Pφf iq −Bω (2)

2.2. Electrical Parameter Design
Electrical parameter identification usually refers to the analy-
sis of known input and output data to determine the unknown
parameter values of a circuit or system. In parameter identifica-
tion, id = 0 vector control can be used for electrical parameter
design. When using id = 0 vector control for electrical param-
eter design, current and voltage sensors are used to measure the
current and voltage of the motor. The symbols denoted by “0”
or “1” in the subscript indicate that the d-axis is injected with

id = 0 or id ̸= 0, respectively. The reference model is as fol-
lows:{

u∗
q0 (k) = Riq0 (k) + φfω0 (k)

u∗
q1 (k) = Riq1 (k) + Ldω1 (k) id1 (k) + φfω1 (k)

(3)

2.3. Mechanical Parameter Design
The estimation of mechanical parameters was achieved by de-
signing the identification model for steady-state conditions and
starting acceleration conditions. The steady-state estimation of
B, with d/dt = 0, can be simplified as:

−3

2
Pφf iq = Bω (4)

When d/dt=0, J does not appear in this equation. To obtain
J so that d/dt ̸= 0, the motor is required to run at constant ac-
celeration for a period of time during the start-up test, which
can be discretized as follows:

J
ω (k + Ts)− ω(k)

Ts
= −3

2
Pφf iq(k)−Bω(k) (5)

where Ts is the sampling time.

2.4. Fitness Function Design

f1

(
R̂, φ̂f

)
= 1

n

n∑
k=1

∣∣u∗
q0 (k)− ûq0 (k)

∣∣
f2

(
R̂, φ̂f

)
= 1

n

n∑
k=1

∣∣u∗
q1 (k)− ûq1 (k)

∣∣
f3

(
φ̂f , B̂

)
= 1

n

n∑
k=1

|ω∗(k)− ω̂(k)|

= 1
n

n∑
k=1

∣∣∣ω∗(k) + 3
2pφ̂f iq/B̂

∣∣∣
f4

(
Ĵ , B̂, φ̂f

)
= 1

M

m∑
k=1

∣∣∣iq∗(k)− îq(k)
∣∣∣

= 1
m

m∑
k=1

∣∣∣∣iq∗(k) + Ĵ
ω(k+Ts)−ω(k)

Ts +B̂ω(k)

1.5pφf

∣∣∣∣

(6)

where u∗
q0(k) is the data sampled at the kth time; u∗

q1(k) is the
data sampled at the kth time; ω∗(k), iq∗(k) are the data sampled
at the kth time.
Let θ̂ = (R̂, φ̂f , B̂, Ĵ), and the required parameters can be

solved by calculating the fitness function value.

f
(
θ̂
)
=

∑4

i=1
aifi (7)

where ai is the weighting coefficient. Since the identification
parameters are all important, the weighting coefficient is 1/4.

3. PMSWG PARAMETER IDENTIFICATION METHOD
BASED ON IOGA

3.1. Using Quantum Bits for Coding
Traditional genetic algorithms generally use binary coding, and
although the binary coding is simple and intuitive, there are
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mapping errors in the discretization of continuous functions.
If the individual is short, it may not meet the accuracy require-
ments. However, if the individual encoding length is long, it
can improve the accuracy, but increase the difficulty of decod-
ing.
In this paper, quantum genetic coding will be used to encode

the solved parameters, and the relationship between parameters
and fitness function is represented by one qubit. Quantum ge-
netic algorithm is carried out on multiple populations simulta-
neously, and each population corresponds to a solution. When
the population size is larger, the genetic complexity of the pop-
ulation is higher, and the possibility of obtaining the optimal so-
lution is greater. The specific implementation can be adjusted
according to the size of the problem to be solved. The quantum
chromosome code is denoted as U , as shown in Equation (8).

U =

[
α1 α2 α3 . . . αn

β1 β2 β3 . . . βn

]
(8)

Qubits differ from classical bits in that they can be in a su-
perposition of two quantum states at the same time, such as:

|φ⟩ = α |0⟩β |1⟩ (9)

(α, β) is two amplitude constants.

|α|2 + |β|2 = 1 (10)

where |0⟩ and |1⟩ represent spin-down and spin-up states, re-
spectively. A qubit can contain both state and state informa-
tion.

3.2. Linear Sorting Selection
In the linear sorting selection method, the individuals are first
sorted according to their fitness values. The best individual is
rankedN and the worst individual ranked 1. Then the selection
probability is distributed linearly according to the individual’s
rank.

Pi =
1

N

(
n−+

(
n+ − n−) i− 1

N − 1

)
; i ∈ {1, . . . , N} (11)

where Pi is the probability of selecting an individual, n− the
probability of selecting the worst individual, and n+ the proba-
bility of selecting the best individual. Even if the probabilities
are the same, each individual gets a different rank. The ranking
process is divided into two steps; in the first step, the overall
is ranked, and in the second step, the ranks are assigned in the
order corresponding to the proportional choices.

3.3. Based on the Crossover of Two Random Numbers
The traditional genetic algorithm generates a pair of offspring
by simulating binary crossover using crossover of each selected
pair of parents. The offspring is as follows: x

(1,t+1)
i = 0.5

[
(1 + αi)x

(1,t)
i + (1− αi)x

(2,t)
i

]
x
(2,t+1)
i = 0.5

[
(1− αi)x

(1,t)
i + (1 + αi)x

(2,t)
i

] (12)

where x
(1,t+1)
i , x(2,t+1)

i are the i-th variables of the two par-

ents; x(1,t)
i , x(2,t)

i are the i(i = 1, 2, . . . , N) variables of the
two offspring; αi is a dynamic parameter; and the expressions
are as follows:

αi =

 (2yi)
1

η+1 , if yi ≤ 0.5;(
1

2(1−yi)

) 1
η+1

, Otherwise.
(13)

where η represents the distribution index, and yi is two random
numbers uniformly generated in the range [0, 1].
Any crossover variable is restricted to a range relative to

the corresponding parent variable, which weakens the global
search capability to some extent, and to overcome this, a
crossover operator based on two random numbers will be used
and updated with the following crossover offspring.

x
(1,t+1)
i =

{
x
(1,t)
i +r1

(
x
(2,t)
i −x

(1,t)
i

)
, if y1 < pc;

x
(1,t)
i , Otherwise.

x
(2,t+1)
i =

{
x
(2,t)
i +r2

(
x
(1,t)
i −x

(2,t)
i

)
, if y2 < pc;

x
(2,t)
i , Otherwise.

(14)

where x(1,t+1)
i , x(2,t+1)

i are the i(i = 1, 2, . . . , N) variables of
the two parents; x(1,t)

i , x(2,t)
i are the i(i = 1, 2, . . . , N) vari-

ables of the two offspring; y1, y2 are two random numbers uni-
formly generated in the range [0, 1]; pc is the crossover rate;
r1, r2 expressions are given as follows:

r1 =

{
u
(

1
2 ,

√
3
6

)
, if y3 < 0.5;

g (0, 1) , Otherwise.

r2 =

{
u
(

1
2 ,

√
3
6

)
, if y4 < 0.5;

g (0, 1) , Otherwise.

(15)

where y3, y4 are two random numbers uniformly generated in
the range [0, 1]; u( 12 ,

√
3
6 ) is a uniform random number with

mean 1
2 and standard deviation

√
3
6 ; g(0, 1) denotes a Gaussian

random number with mean 0 and standard deviation 1.

3.4. Introduction of Gaussian Mutation and Cauchy Mutation
Strategies
Traditional genetic algorithm is an optimization algorithm
based on genetics and evolutionary theory, in which mutation
is an important operation to increase the diversity of the
population by changing the genes of certain individuals, thus
facilitating global search. However, too high or too low muta-
tion probabilities can affect the performance of the algorithm.
When the mutation probability is too high, the algorithm will
rely excessively on the mutation operation, resulting in a too
random population and lack of effective local search ability,
which may lead to slow convergence of the algorithm or fall
into local optimal solutions. When the mutation probability is
too low, the algorithm may fall into a local optimal solution,
and it is difficult to jump out of that optimal solution to find a
more optimal solution.
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The traditional genetic algorithm mutation operation selects
the j-th gene of the i-th individual for mutation, and the muta-
tion operation is as follows:

xij =
{

xij − (xij − xmin) ∗ (1− f (g)) , r ≤ 0.5
xij + (xmax − xij) ∗ (1− f (g)) , r > 0.5

(16)

where xmax, xmin are the upper and lower bounds of the gene
xij ; f(g) = r2(1 − g/gmax)2; r2 is a random number; g is the
current number of iterations; gmax is the maximum number of
evolutions; r is a random number between [0, 1].
To solve this problem, the variance probability can be dy-

namically adjusted according to the fitness value of the pop-
ulation. Specifically, the population can be divided into two
subpopulations according to the fitness value, and both Gaus-
sian mutation operator and Cauchy mutation operator can be
introduced.
Gaussian mutation operator is a common probability distri-

bution function, which describes the distribution of a set of data
by introducing a Gaussian distribution function, also known as
a normal distribution function, into the mutation operator. The
Gaussian mutation operator can be viewed as a perturbation of
the Gaussian distribution of gene values by the mutation oper-
ation. Specifically, for a given gene value x, its mutated value
can be calculated by the following equation:

x′ = x+∆x (17)

where ∆x is a Gaussian distributed random number obeying a
mean of 0 and a standard deviation of σ, with a density function:

fG(x) =
1

σ
√
2π

e−
x2

2σ2 (18)

where x is a random variable, and the range of independent
variables is [−∞,∞].
The Cauchy mutation operator introduces a Cauchy distribu-

tion function into the mutation operator, and the Cauchy muta-
tion operator treats the mutation operation as a perturbation of
the Cauchy distribution of gene values. Specifically, for a gene
value x, the mutated value can be calculated by the following
equation.

x′ = x+∆x (19)
where∆x is a random number obeying the Cauchy distribution
with a density function.

fC(x) =
1

π

γ

(x− x0)
2
+ γ2

(20)

where x is a random variable, and the independent variable
ranges from [−∞,∞]. γ and x0 are constant coefficients,
γ > 0, and when γ = 1, x0 = 0, x obeys the standard Cauchy
distribution.
The Cauchy and Gaussian distributions are shown in Fig. 1.
The main idea of Gaussian mutation is to generate a new

solution randomly in the vicinity of the current individual, so
that the current individual can search within a closer distance
from itself. This prevents the algorithm from falling into a lo-
cal optimum and improves the local search ability of the algo-
rithm. The Gaussian distribution has a bell-shaped curve with

FIGURE 1. Cauchy distribution and Gaussian distribution diagram.

the center point being the current individual, and the probability
of a randomly generated new solution decreases as it gets far-
ther from the center point, which allows the algorithm to search
the surrounding solution space in a more targeted manner. The
main idea of the Cauchy mutation is to give less well-adapted
individuals a greater probability of moving away from itself, al-
lowing less well-adapted individuals to jump out of the worse
solution region, enhancing the global search capability of the al-
gorithm. The shape of the Cauchy distribution is a spike curve
with the center point being the current individual, and the prob-
ability of a new randomly generated solution does not decrease
as it gets farther away from the center point, which makes the
algorithm more exploratory and easier to jump out of the local
optimal solution.

x′
i =

{
xi + range · p (xi) ·Gi(0, 1) p (xi) ≤ 0.5
xi + range · p (xi) · Ci(1, 0) p (xi) > 0.5

(21)

where p (xi) = f(xi)−fmin
fmax−fmin

is the proportional transformation
function; fmax, fmin are the maximum and minimum values of
the individual function values in the population, respectively;
f(xi) is the fitness function value of the individual. xi, x′

i

are the i-th chromosome before and after the mutation, respec-
tively, and range is a uniform random number between [0, 1].
The populations after the Gaussian mutation operation and

the Cauchy mutation operation are merged into one population,
and the individuals are moved closer to the population optimum
by Equation (22). The flowchart of population mutation after
the merger is shown in Fig. 2.

xi = (1− c)xi + cxt (22)

where c is the individual movement speed and generally chosen
as 0.1–0.6.

3.5. Basic Steps of the Improved Operator Genetic Algorithm
The coding, selection, crossover, andmutation of the traditional
genetic algorithm are improved by the description in the previ-
ous sections, and the detailed steps of the improved operator
genetic algorithm are shown in Fig. 3.

(1) Initialization of populations by quantum bit encoding and
setting of parameters;
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FIGURE 2. Mixed mutation flow chart.

(2) Set the fitness function f(xi), and calculate the value of
the fitness function and record the optimal individuals
xbest;

(3) Linear ranking selection of the initialized population,
where individuals with high fitness are selected with high
probability;

(4) Two random crossovers of individuals with high adapta-
tion after selection were performed by Equation (16);

(5) The mutation operation is performed on the population af-
ter the crossover operation in step (4), and the proportional
transformation function is used to determine whether the
populationwill undergoGaussianmutation or Cauchymu-
tation, when the population will undergo Gaussian muta-
tion and vice versa;

(6) Combine the populations after Gaussian and Cauchy mu-
tations into a new population, and in order to enhance the
merit-seeking ability of the population, perform mutation
operations on the combined populations according to the
steps in Fig. 3 and record the most individuals xi after mu-
tation;

(7) Since the problem to be solved is about minimizing the
value of fitness, when comparing the relationship be-
tween the previous generation and the new generation, if
f(xbest) < f(xt), then n = 0, xbest = xt, otherwise
n = n + 1; determine whether the number of iterations
n of the optimal solution update is greater than 20, and if
yes, then update using Equation (21) and obtain the new
population with n = 0;

(8) Judge the relationship between the current iteration num-
ber g and the maximum iteration number gmax, if g < gmax,
then g = g + 1; otherwise, record the optimal individual
xbest and end.

3.6. Improved of GA (IOGA) Parameter Identification Principle
With the above operation steps of the improved operator, the
principle of IOGA identification is shown in Fig. 4.

(1) Acquisition of electrical signals, initial population and set-
ting of initial parameters, setting the range of parameters
to be identified;

(2) Bringing the initial population into Equations (4) and (5)
and obtaining the corresponding fitness values;

(3) Finding the optimal individual for the initial individual
based on the calculated fitness value;

(4) The optimal individual found is substituted into Equa-
tion (14) for linear ranking selection, e.g,:Ĵ

(1,t+1)
i = 0.5

[
(1 + αi) Ĵ

(1,t)
i +(1−αi) Ĵ

(2,t)
i

]
Ĵ
(2,t+1)
i = 0.5

[
(1− αi) Ĵ

(1,t)
i +(1+αi) Ĵ

(2,t)
i

] (23)

(5) The individuals selected by linear sorting were subjected
to Gaussian mutation and Cauchy mutation. If the propor-
tional transformation function p(xi) ≤ 0.5, the population
will undergo Gaussian mutation, and vice versa, the pop-
ulation will undergo Cauchy mutation.

(6) The populations after Gaussian mutation and Cauchy mu-
tation are combined into one population and updated by
Equation (22), like the optimal solution approached, and
if the individual with the lowest fitness value is obtained,
it replaces the previous generation of individuals; other-
wise, it is updated by Equation (21), and if the individual
with the lowest fitness value is obtained, it replaces the
previous generation of individuals; otherwise, the original
individuals are not updated, e.g.,

Ĵ ′
i =

Ĵi+range · p
(
Ĵi

)
·Gi(0, 1) p

(
Ĵi

)
≤0.5

Ĵi+range · p
(
Ĵi

)
·Ci(1, 0) p

(
Ĵi

)
>0.5

(24)

or Ĵi =(1− c) Ĵi + cĴt (25)

(7) Solve for the minimum value of the fitness function ac-
cording to Equation (7), if f(xbest) < f(xt), then n = 0,
xbest = xt; otherwise, n = n + 1; determine whether n
is greater than 20, and if yes, then update using Equation
(21) and obtain a new population with n = 0;

(8) If the termination condition is satisfied, the optimal pa-
rameters are output; otherwise, go to step (4).

4. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the feasibility of IOGA-based parameter identifica-
tion, the compiled Simulink simulation model was downloaded
to RT-LAB to implement hardware-in-the-loop simulation ex-
periments of the PMSWG drive system. Fig. 5 is a block di-
agram of the vector control strategy with id = 0, and Fig. 6 is
RT-LAB experimental platform. PMSWGparameters as shown
in Table 1.
PMSWG is carried out by improving the genetic operator

method. Method I introduces quantum bit encoding with linear
ranking selection IOGA1; method II introduces the crossover of
two random numbers IOGA2; method III introduces Gaussian
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FIGURE 3. Flow chart of improved operator genetic algorithm.
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B identification value (0.1035 N  m/rad/s/div)

Error 3.5%

B reference value (0.1 N  m/rad/s/div)

B identification value (0.1016 N  m/rad/s /div)

Error 1.6%

.
.

. .

.

.
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(c)

IOGA3

IOGA1 IOGA2

FIGURE 8. Coefficient of viscous friction identification curve.
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TABLE 1. IPMSWG parameter table.

Parameters Value
Polar number 4
Stator resistance/Ω 0.933
Stator d axis inductance/mH 5.20
Stator q axis inductance/mH 11.5
Permanent magnet flux/Wb 0.175
Torque inertia/kg ·m2 0.003
Rated voltage/V 380
Rated torque/(N ·m) 10
Rated speed/(r/min) 1000
Rated power/kW 4
Coefficient of viscous friction B/N ·m/rad/s 0.1

TABLE 2. Comparison of three algorithms simulation.

Parameters IOGA1 IOGA2 IOGA3
Stator resistance/Ω 0.961 0.955 0.945
error/% 3.0 2.4 1.3
Torque inertia/kg ·m2 3.12e-3 2.895e-3 2.933e-3
error/% 4 3.5 2.2
Permanent magnet flux/Wb 0.1822 0.18 0.177
error/% 4.1 2.9 1.1
COVF/N ·m/rad/s 0.1054 0.1035 0.1016
error/% 5.4 3.5 1.6
Identification time/(ms) 62 55 51
Fitness value 0.84 0.71 0.67

Flux reference value (0.175 Wb/div)

Flux identification value (0.1822 Wb/div)

Error 4.1%
Flux reference value (0.175 Wb/div)

Flux identification value (0.18 Wb/div)

Error 2.9%

Flux reference value (0.175 Wb/div)

Flux identification value (0.177 Wb/div)

Error 1.1%

(a) (b)

(c)

IOGA3

IOGA1 IOGA2

FIGURE 9. Permanent magnet flux identification curve.
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J reference value (3e-3kg  m  /div)

J identification value (3.12e-3kg  m  /div)

Error 4.0%

J reference value (3e-3kg  m  /div)

J identification value (2.895e-3kg  m  /div)

Error 3.5%

J reference value(3e-3kg  m  /div)2

2

Error 2.2%

2

2

2

2

..

. .

.

.

(a) (b)

(c)

IOGA3

IOGA1 IOGA2

FIGURE 10. Torque inertia identification curve.

Fitness value by IOGA1 is 0.84 Fitness value by IOGA2 is 0.71

Fitness value by IOGA3 is 0.67

(a) (b)

(c)

IOGA3

IOGA1 IOGA2

FIGURE 11. Fitness function value curve.

mutation and Cauchy mutation strategy IOGA3. The compari-
son of three algorithms’ simulations is shown in Table 2.

The identification results of the three methods are shown in
Fig. 7 to Fig. 10. Since the values of d-axis inductance, q-axis
inductance, and permanent magnet flux are relatively small, the
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stator resistance, torque inertia, coefficient of viscous friction,
and permanent magnet chain are enlarged by 10, 1000, 500, and
200 times respectively for a simulation time of 0.5 s in order to
better observe the identification results.
In Fig. 7 to Fig. 8, the identification results of three algo-

rithms for stator resistance and viscous friction coefficient are
shown respectively. In the stator resistance discrimination, the
discrimination errors of IOGA1, IOGA2, and IOGA3 are 3.0%,
2.4%, and 1.4%, respectively. In IOGA1 and IOGA2, although
the accuracy of IOGA2 is higher than that of IOGA1, it is
slower than IOGA1 in terms of convergence speed, which may
be because IOGA1 selects to the optimal individual at the initial
population. IOGA3’s convergence and discrimination accuracy
are better than IOGA1 and IOGA2.
In the coefficient of viscous friction identification, the dis-

crimination errors of IOGA1, IOGA2, and IOGA3 are 5.4%,
3.5%, and 1.6%, respectively. The larger discrimination accu-
racy error of IOGA1 is likely due to the small population size,
which causes the algorithm to converge to the local optimal so-
lution too early. The discrimination accuracy error of IOGA3
is the smallest, thanks to the mixed variance of Gaussian and
Cauchy mutation, which makes the search range of the popula-
tion larger.
In Fig. 9 to Fig. 10, the identification results of the three algo-

rithms for permanent magnet flux and torque inertia are shown
respectively. In the identification of permanent magnet flux,
the identification errors of IOGA1, IOGA2, and IOGA3 are
4.1%, 2.9%, and 1.1%, respectively. Among the three meth-
ods, IOGA1 is worse than IOGA2 and IOGA3 in terms of con-
vergence speed and identification accuracy, because the popu-
lation diversity of IOGA1 is too small and easy to fall into local
optimum.
In the torque inertia identification, the identification errors

of IOGA1, IOGA2, and IOGA3 are 4.0%, 3.5%, and 2.2%,
respectively. Among the three methods of identification, the
convergence speed and identification accuracy of IOGA1 and
IOGA2 are similar, and the identification accuracy and conver-
gence speed of IOGA3 are the best among the three algorithms,
and the strategy of introducing mixed variants makes the initial
population diverse enough to ensure the breadth and depth of
the search space of the algorithm.
The fitness function curves of the three algorithms in this pa-

per are shown in Fig. 11, which converge to 0.67 at 51ms by
IOGA3 discrimination method. The fitness function values of
IOGA1 and IOGA2 discrimination methods are 0.71 and 0.84,
respectively, and the convergence times are 55ms and 62ms,
respectively. Among the three algorithms, due to the introduc-
tion of mixed variance in IOGA3 discrimination method strat-
egy is introduced in IOGA3, which results in the smallest fit-
ness value and fastest convergence speed.

5. CONCLUSION
PMSWG parameter identification method with improved op-
erator genetic algorithm is proposed to address the problem of
the influence of perturbations caused by mechanical parameter
changes on the dynamic performance of motor speed control
systems. The method is able to identify electrical and mechani-

cal parameters with higher accuracy of the identificationmodel.
Through experimental analysis, the following conclusions are
drawn:

(1) The IOGA method proposed in this paper can identify the
stator resistance R, permanent magnet flux, torque inertia
J , and coefficient of viscous frictionB of PMSWG online
and in real-time.

(2) The method in this paper has better parameter identi-
fication capability; the identification error does not ex-
ceed 2.2%; the convergence speed is 51ms; and the con-
vergence speed and parameter accuracy are better than
IOGA1 and IOGA2 identification methods.
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