Vol. 136
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-22
A Multi-Layer Metasurface-Enabled Design of Bandpass Filter Screens with Reconfigurable Transmission Bandwidth
By
Progress In Electromagnetics Research C, Vol. 136, 229-244, 2023
Abstract
In this paper, a novel design concept that uses multi-layer metasurface structures to design and develop bandpass filter screens is proposed. The unique proposition of the work lies in the control of transmission bandwidth of such metasurface screens, which has been obtained by sequential arrangement of unit cell layers, that comprise of Minkowski fractal-shaped unit cells and its complement. This reconfigurability of the structure is achieved without changing the geometry of the unit cell design, rather by stacking the layers in different configurations, or even by changing the substrate thickness, leading to the capability to obtain either narrowband or broadband filtering screens as per the requirement. An equivalent circuit model is proposed to explain such behaviour. Two configurations of stacked complementary surfaces, namely the Patch-Slot-Patch (PSP) and the Slot-Patch-Slot (SPS) designs have been investigated. The PSP structure on a thinner dielectric substrate offered dual band resonance with distinguishable transmission peaks, whereas the same configuration on substrate of increased thickness offered wider transmission bandwidth (45.5% to 50.5% percentage bandwidth). In comparison, the SPS structure offered much narrower transmission bandwidth (varies between 4.7% to 8.16%). The effect of changing the periodicity of the unit cell elements, without altering the fractal unit cell dimensions, has been described, through which one can control the band of operation and roll-off performance of the screens. The simulation results are found to be in good agreement with the measured results of the fabricated prototypes.
Citation
Amartya Banerjee, Soumya Chakravarty, Tapas Chakravarty, and Rowdra Ghatak, "A Multi-Layer Metasurface-Enabled Design of Bandpass Filter Screens with Reconfigurable Transmission Bandwidth," Progress In Electromagnetics Research C, Vol. 136, 229-244, 2023.
doi:10.2528/PIERC23062907
References

1. Dimopoulos, H. G., Analog Electronic Filters: Theory, Design and Synthesis, Springer Science & Business Media, 2011.

2. Levy, R., Classic Works in RF Engineering: Volume-2 --- Microwave and RF Filters, Artech House, 2007.

3. Tang, C. W. and M. G. Chen, "A microstrip ultra-wideband bandpass filter with cascaded broadband bandpass and bandstop filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 11, 2412-2418, 2007.
doi:10.1109/TMTT.2007.908671

4. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567

5. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005, ISBN: 978-0-471-37047-5.

6. Bayatpur, F. and K. Sarabandi, "Single-layer high-order miniaturized-element frequency-selective surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 774-781, 2008.
doi:10.1109/TMTT.2008.919654

7. Huang, H. F. and H. Huang, "Millimeter-wave wideband high effeciency circular airy OAM multibeams with multiplexing OAM modes based on transmission metasurfaces," Progress In Electromagnetic Research, Vol. 173, 151-159, 2022.
doi:10.2528/PIER22022405

8. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, 2010.
doi:10.1109/TAP.2009.2037702

9. Chiu, C. N. and K. P. Chang, "A novel miniaturized-element frequency selective surface having a stable resonance," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1175-1177, 2008.

10. Wu, T.-K., Frequency Selective Surface and Grid Array, Wiley-Interscience, 1995, ISBN: 978-0471311898.

11. Li, H. P., G. M. Wang, J. G. Liang, and X. J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetic Research, Vol. 155, 115-125, 2016.
doi:10.2528/PIER16012011

12. Al-Joumayly, M. A. and N. Behdad, "Wideband planar microwave lenses using sub-wavelength spatial phase shifters," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4542-4552, 2011.
doi:10.1109/TAP.2011.2165515

13. Li, M., M. A. Al-Joumayly, and N. Behdad, "Broadband true time-delay microwave lenses based on miniaturized element frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1166-1179, 2013.
doi:10.1109/TAP.2012.2227444

14. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, Vol. 13, 139-150, 2014.
doi:10.1038/nmat3839

15. Ding, F., A. Pors, and S. I. Bozhevolnyi, "Gradient metasurfaces: A review of fundamentals and applications," Reports on Progress in Physics, Vol. 81, 2018.

16. Chen, M., M. Kim, A. M. H. Wong, and G. V. Eleftheriades, "Huygens' Metasurfaces from microwaves to optics: A review," Nanophotonics, Vol. 7, 1207-1231, 2018.
doi:10.1515/nanoph-2017-0117

17. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley Interscience, John Wiley & Sons, 2006, ISBN 978-0-471-66985-2.

18. Epstein, A. and G. V. Eleftheriades, "Huygens' metasurfaces via the equivalence principle: Design and applications," Journal of the Optical Society of America B, Vol. 33, No. 2, A31-A50, 2016.
doi:10.1364/JOSAB.33.000A31

19. Joseph, P., S. Wong, M. Selvanayagam, and G. V. Eleftheriades, "Design of unit cells and demonstration of methods for synthesizing huygens metasurfaces," Photonics and Nanostructures: Fundamentals and Applications, Vol. 12, No. 4, 360-375, 2014.
doi:10.1016/j.photonics.2014.07.001

20. Lavigne, G., K. Achouri, V. S. Asadchy, S. A. Tretyakov, and C. Caloz, "Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1321-1330, 2018.
doi:10.1109/TAP.2018.2793958

21. Capolino, F., A. Vallecchi, and M. Albani, "Equivalent transmission line model with a lumped X-circuit for a metalayer made of pairs of planar conductors," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 852-861, 2013.
doi:10.1109/TAP.2012.2225013

22. Rabinovich, O. and A. Epstein, "Analytical design of Printed-Circuit-Board (PCB) metagratings for perfect anomalous reflection," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 4086-4095, 2018.
doi:10.1109/TAP.2018.2836379

23. Hadi Badri, S., H. Soofi, and S. SaeidNahaei, "Thermally reconfigurable extraordinary terahertz transmission using vanadium dioxide," Journal of the Optical Society of America B, Vol. 39, No. 6, 1614-1621, 2022.
doi:10.1364/JOSAB.459639

24. Hadi Badri, S., M. M. Gilarlue, S. SaeidNahaei, and J. S. Kim, "Narrowband-to-broadband switchable and polarization-insensitive terahertz metasurface absorber enabled by phase-change material," Journal of Optics, Vol. 24, No. 2, 2022.

25. Bengin, V. C., V. Radonic, and B. Jokanovic, "Fractal geometries of complementary split-ring resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 10, 2312-2321, 2008.
doi:10.1109/TMTT.2008.2003522

26. Moeini, S., "Homogenization of fractal metasurface based on extension of Babinet-Booker's principle," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 1061-1065, 2019.
doi:10.1109/LAWP.2019.2909134

27. Abdelrahman, A. H., F. Yang, A. Z. Elsherbeni, and P. Nayeri, Analysis and Design of Transmitarray Antennas, Morgan & Claypool, 2017, ISBN: 9781627058742.
doi:10.1007/978-3-031-01541-0

28. Abdelrahman, A. H., F. Yang, and A. Z. Elsherbeni, "Transmission phase limit of multilayer frequency selective surfaces for transmitarray designs," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 690-697, 2014.
doi:10.1109/TAP.2013.2289313

29. Ryan, C. G. M., M. Reza, J. Shaker, J. R. Bray, Y. M. M. Antar, and A. Ittipiboon, "A wideband transmitarray using dual-resonant double square rings," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1486-1493, 2010.
doi:10.1109/TAP.2010.2044356

30. Milne, R., "Dipole array lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 4, 704-712, 1982.
doi:10.1109/TAP.1982.1142835

31. Benzaouia, M., J. D. Joannopoulos, S. G. Johnson, and A. Karalis, "Analytical criteria for designing multiresonance filters in scattering systems, with application to microwave metasurfaces," Physical Review Applied, Vol. 17, No. 3, 2022.
doi:10.1103/PhysRevApplied.17.034018

32. Xu, Y. and M. He, "Design of multilayer frequency-selective surfaces by equivalent circuit method and basic building blocks," International Journal of Antennas and Propagation, Vol. 2019, Article ID 9582564, 13 pages, 2019.

33. Olk, A. E. and D. A. Powell, "Accurate metasurface synthesis incorporating near field coupling effects," Physical Review Applied, Vol. 11, 2019.

34., https://www.3ds.com/products-services/simulia/products/cst-studio-suite/.

35. Manafi, S. and H. Deng, "Design of a small modified Minkowski fractal antenna for passive deep brain stimulation implants," International Journal of Antennas and Propagation, Vol. 2014, No. 12, Article ID 749043, 9 pages, 2014.

36. Freaky, D. A., "Conversions between S, Z, Y, h, ABCD and T parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 2, 205-211, 1994.
doi:10.1109/22.275248

37. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2790-2800, 2022.
doi:10.1109/TAP.2021.3138256

38. Qiu, S., Q. Guo, and Z. Li, "Tunable frequency selective surface based on a sliding 3D-printed inserted dielectric," IEEE Access, Vol. 9, 19743-19748, 2021.
doi:10.1109/ACCESS.2021.3054434

39. Jin, C., Q. Lv, B. Zhang, J. Liu, S. An, Z. S. He, and Z. Shen, "Ultra-wide-angle bandpass frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5673-5681, 2021.
doi:10.1109/TAP.2021.3061144