Vol. 136
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-17
A Robust Model Predictive Current Control Strategy with Low Complexity for PMSM
By
Progress In Electromagnetics Research C, Vol. 136, 161-174, 2023
Abstract
Model predictive current control (MPCC) suffers from high computational effort, and control performance is affected by parameter mismatch. In this paper, a robust MPCC strategy with low complexity for permanent magnet synchronous motor (PMSM) is proposed, which reduces the computational complexity and improves robustness. First, a low-pass filter is used to obtain the current actual voltage, and the next-cycle voltage vector is obtained by angle compensation. And alternative voltage vectors (AVVs) are selected according to the location of the next-cycle voltage vector to reduce the control system computation. This part does not use motor parameters to avoid the influence of parameter changes. Then, the relationship between the current error and the input voltage and current sampling value is analysed. A low-complexity current prediction error compensation algorithm is designed to compensate the error caused by the mismatch of motor inductance and flux linkage, which enhances the robustness of the system. Finally, the experimental results demonstrate the correctness and effectiveness of the proposed strategy.
Citation
Qianghui Xiao, Zhongjian Tang, Wenting Zhang, Zhi Yu, and Zhun Cheng, "A Robust Model Predictive Current Control Strategy with Low Complexity for PMSM," Progress In Electromagnetics Research C, Vol. 136, 161-174, 2023.
doi:10.2528/PIERC23060603
References

1. Kefalas, T. D. and A. G. Kladas, "Thermal investigation of Permanent-Magnet synchronous motor for aerospace applications," IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, 4404-4411, Aug. 2014.
doi:10.1109/TIE.2013.2278521

2. Chen, L., H. Xu, X. Sun, and Y. Cai, "Three-vector-based model predictive torque control for a permanent magnet synchronous motor of EVs," IEEE Transactions on Transportation Electrification, Vol. 7, No. 3, 1454-1465, Sept. 2021.
doi:10.1109/TTE.2021.3053256

3. Li, S., Y. Xu, W. Zhang, and J. Zou, "A novel two-phase mode switching control strategy for PMSM position servo systems with fast-response and high-precision," IEEE Transactions on Power Electronics, Vol. 38, No. 1, 803-815, Jan. 2023.
doi:10.1109/TPEL.2022.3200969

4. Repecho, V., J. B. Waqar, D. Biel, and A. Doria-Cerezo, "Zero speed sensorless scheme for permanent magnet synchronous machine under decoupled sliding-mode control," IEEE Transactions on Industrial Electronics, Vol. 69, No. 2, 1288-1297, Feb. 2022.
doi:10.1109/TIE.2021.3062260

5. Yi, P., X. Wang, D. Chen, and Z. Sun, "PMSM current harmonics control technique based on speed adaptive robust control," IEEE Transactions on Transportation Electrification, Vol. 8, No. 2, 1794-1806, Jun. 2022.
doi:10.1109/TTE.2021.3128535

6. Gu, M., et al., "Finite control set model predictive torque control with reduced computation burden for PMSM based on discrete space vector modulation," IEEE Transactions on Energy Conversion, Vol. 38, No. 1, 703-712, Mar. 2023.
doi:10.1109/TEC.2022.3211569

7. Chen, W., S. Zeng, G. Zhang, T. Shi, and C. Xia, "A modified double vectors model predictive torque control of permanent magnet synchronous motor," IEEE Transactions on Power Electronics, Vol. 34, No. 11, 11419-11428, Nov. 2019.
doi:10.1109/TPEL.2019.2898901

8. Petkar, S. G., K. Eshwar, and V. K. Thippiripati, "A modified model predictive current control of permanent magnet synchronous motor drive," IEEE Transactions on Industrial Electronics, Vol. 68, No. 2, 1025-1034, Feb. 2021.
doi:10.1109/TIE.2020.2970671

9. Wu, M., X. Sun, J. Zhu, G. Lei, and Y. Guo, "Improved model predictive torque control for PMSM drives based on duty cycle optimization," IEEE Transactions on Magnetics, Vol. 57, No. 2, 1-5, Art No. 8200505, Feb. 2021.

10. Mamdouh, M. and M. A. Abido, "Efficient predictive torque control for induction motor drive," IEEE Transactions on Industrial Electronics, Vol. 66, No. 9, 6757-6767, Sept. 2019.
doi:10.1109/TIE.2018.2879283

11. Amiri, M., J. Milimonfared, and D. A. Khaburi, "Predictive torque control implementation for induction motors based on discrete space vector modulation," IEEE Transactions on Industrial Electronics, Vol. 65, No. 9, 6881-6889, Sept. 2018.
doi:10.1109/TIE.2018.2795589

12. Xie, H., F. Wang, Q. Xun, Y. He, J. Rodriguez, and R. Kennel, "A low-complexity gradient descent solution with backtracking iteration approach for finite control set predictive current control," IEEE Transactions on Industrial Electronics, Vol. 69, No. 5, 4522-4533, May 2022.
doi:10.1109/TIE.2021.3084164

13. Wang, Y., et al., "Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3537-3547, May 2017.
doi:10.1109/TIE.2017.2652338

14. Sun, X., T. Li, Z. Zhu, G. Lei, Y. Guo, and J. Zhu, "Speed sensorless model predictive current control based on finite position set for PMSHM drives," IEEE Transactions on Transportation Electrification, Vol. 7, No. 4, 2743-2752, Dec. 2021.
doi:10.1109/TTE.2021.3081436

15. Sun, X., T. Li, M. Yao, G. Lei, Y. Guo, and J. Zhu, "Improved finite-control-set model predictive control with virtual vectors for PMSHM drives," IEEE Transactions on Energy Conversion, Vol. 37, No. 3, 1885-1894, Sept. 2022.

16. Young, H. A., M. A. Perez, and J. Rodriguez, "Analysis of finnite-control-set model predictive current control with model parameter mismatch in a three-phase inverter," IEEE Transactions on Industrial Electronics, Vol. 63, No. 5, 3100-3107, May 2016.
doi:10.1109/TIE.2016.2515072

17. Li, T., X. Sun, G. Lei, Y. Guo, Z. Yang, and J. Zhu, "Finite-control-set model predictive control of permanent magnet synchronous motor drive systems --- An overview," IEEE/CAA Journal of Automatica Sinica, Vol. 9, No. 12, 2087-2105, Dec. 2022.
doi:10.1109/JAS.2022.105851

18. Liu, S. and C. Liu, "Virtual-vector-based robust predictive current control for dual three-phase PMSM," IEEE Transactions on Industrial Electronics, Vol. 68, No. 3, 2048-2058, Mar. 2021.
doi:10.1109/TIE.2020.2973905

19. Mousavi, M. S., et al., "Predictive torque control of induction motor based on a robust integral sliding mode observer," IEEE Transactions on Industrial Electronics, Vol. 70, No. 3, 2339-2350, Mar. 2023.
doi:10.1109/TIE.2022.3169831

20. An, X., G. Liu, Q. Chen, W. Zhao, and X. Song, "Adjustable model predictive control for IPMSM drives based on online stator inductance identification," IEEE Transactions on Industrial Electronics, Vol. 69, No. 4, 3368-3381, Apr. 2022.
doi:10.1109/TIE.2021.3076718

21. Huang, X., Y. Yu, Z. Li, et al. "Online identification of inductance and flux linkage for inverter-fed SPMSMs using switching state functions," IEEE Transactions on Power Electronics, Vol. 38, No. 1, 917-930, Jan. 2023.
doi:10.1109/TPEL.2022.3206119

22. Wang, Y., W. Liao, S. Huang, et al. "A robust DPCC for IPMSM based on a full parameter identification method," IEEE Transactions on Industrial Electronics, Vol. 70, No. 8, 7695-7705, Aug. 2023.
doi:10.1109/TIE.2022.3212371

23. Sun, Z., Y. Deng, J. Wang, T. Yang, Z. Wei, and H. Cao, "Finite control set model-free predictive current control of PMSM with two voltage vectors based on ultralocal model," IEEE Transactions on Power Electronics, Vol. 38, No. 1, 776-788, Jan. 2023.
doi:10.1109/TPEL.2022.3198990

24. Zhou, Y., H. Li, R. Liu, and J. Mao, "Continuous voltage vector model-free predictive current control of surface mounted permanent magnet synchronous motor," IEEE Transactions on Energy Conversion, Vol. 34, No. 2, 899-908, Jun. 2019.
doi:10.1109/TEC.2018.2867218

25. Siami, M., D. A. Khaburi, A. Abbaszadeh, and J. Rodriguez, "Robustness improvement of predictive current control using prediction error correction for permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3458-3466, Jun. 2016.
doi:10.1109/TIE.2016.2521734

26. Zhang, X., L. Zhang, and Y. Zhang, "Model predictive current control for PMSM drives with parameter robustness improvement," IEEE Transactions on Power Electronics, Vol. 34, No. 2, 1645-1657, Feb. 2019.
doi:10.1109/TPEL.2018.2835835