Vol. 137
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-09-01
A Miniaturized 3-Way Power Divider Based on Bagley Polygon
By
Progress In Electromagnetics Research C, Vol. 137, 111-121, 2023
Abstract
A three-way power divider based on Bagley polygon is here reduced in dimension by applying the concept of reducing delay line length by applying open circuit stubs. Whereas this technique is known in literature, the delay line reduction is done symmetrically by placing the stub mid-line, which would imply packing issues leading to a reduced size reduction. In this contribution a theoretical development on non-symmetric reduced length delay line is carried out, allowing for a more effective size reduction of the Bagley-based power divider. Measurements on a prototype designed at 2.45 GHz occupying less than half of the area of a canonical Bagley divider with comparable performances over a slightly reduced operational bandwidth prove the validity of the approach.
Citation
Stefano Maddio, Giuseppe Pelosi, Monica Righini, and Stefano Selleri, "A Miniaturized 3-Way Power Divider Based on Bagley Polygon," Progress In Electromagnetics Research C, Vol. 137, 111-121, 2023.
doi:10.2528/PIERC23060106
References

1. Pozar, D., Microwave Engineering, 3rd Ed., John Wiley, 2005.

2. Wilkinson, E. J., "An N-way power divider," IRE Trans. on Microwave Theory and Techniques, Vol. 8, 116-118, 1960.
doi:10.1109/TMTT.1960.1124668

3. La Rocca, L., S. Maddio, G. Pelosi, M. Righini, and S. Selleri, "A compact three-way Wilkinson divider with reduced central line length," Proc. IEEE Int. Symp. Antennas Propagat. and USNC- URSI Radio Science Meeting (AP-S/URSI), 1456-1457, Denver, CO, USA, 2022.

4. Sakagami, I., T. Wuren, M. Fujii, and M. Tahara, "Compact multi-way power dividers similar to the Bagley polygon," Proc. IEEE/MTT-S Int. Microwave Symp., 419-422, Honolulu, HI, USA, 2007.

5. Chen, G.-Y., J.-S. Sun, S.-Y. Huang, and Y.-D. Chen, "The novel 3-way power dividers/combiners structure and design," Proc. IEEE Annual Wireless Microwave Techn. Conf., 1-4, Clearwater Beach, FL, USA, 2006.

6. Elles, D. S. and Y.-K. Yoon, "Compact dual band three way Bagley polygon power divider using Composite Right/Left Handed (CRLH) transmission lines," Proc. IEEE MTT-S Int. Microwave Symp., 485-488, Boston, MA, USA, 2009.

7. Jibreel, O., N. I. Dib, and K. Al Shamaileh, "Systematic detailed design of unequal-split 3-way Bagley power dividers using uniform transmission lines," Progress In Electromagnetics Research M, Vol. 79, 137-145, 2019.
doi:10.2528/PIERM18123101

8. Jaradat, H., N. Dib, and K. Al Shamaileh, "Design of multi-band miniaturized Bagley power dividers based on non-uniform coplanar waveguide," AEU --- International Journal of Electronics and Communications, Vol. 118, Art. 153137, 2020.
doi:10.1016/j.aeue.2020.153137

9. Maddio, S., G. Pelosi, M. Righini, and S. Selleri, "An optimized compact rat race at 2.45 GHz," Progress In Electromagnetics Research M, Vol. 108, 115-126, 2022.
doi:10.2528/PIERM21112603

10. Maddio, S., G. Pelosi, M. Righini, and S. Selleri, "A novel hybrid coupler design based on the concept of balanced loaded transmission lines," Proc. IEEE Int. Symp. Antennas Propagat. and USNC-URSI Radio Science Meeting (AP-S/URSI), 743-744, Atlanta, GA, USA, 2019.

11. Maddio, S., G. Pelosi, M. Righini, and S. Selleri, "Balanaced loaded transmission lines applied to hybrid couplers design," Proc. IEEE Int. Symp. Antennas Propagat. and USNC-URSI Radio Science Meeting (AP-S/URSI), 947-948, Boston, MA, USA, 2018.

12. Yoon, Y. and Y. Kim, "Bagley power divider with uniform transmission lines for arbitrary power ratio and terminated in different impedances," Progress In Electromagnetics Research C, Vol. 77, 195-203, 2017.
doi:10.2528/PIERC17051101

13. Bernardi, P., R. Cicchetti, G. Pelosi, A. Reatti, S. Selleri, and M. Tatini, "An equivalent circuit for EMI prediction in printed circuit boards featuring a straight-to-bent microstrip line coupling," Progress In Electromagnetics Research B, Vol. 5, 107-118, 2008.
doi:10.2528/PIERB08020502