Vol. 136
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-14
Efficient Implementation of Aperture Fill Time Correction for Wideband Array Using the Low-Complexity Keystone Transform
By
Progress In Electromagnetics Research C, Vol. 136, 101-112, 2023
Abstract
In order to remove the influence of the aperture fill time (AFT) for wideband array, the scaling principle of the Keystone (KT) transform is applied to eliminate the linear coupling between spatial domain and frequency domain of wideband array signal. However, the classic KT transform is implemented by interpolation Sinc which is difficult to apply in engineering and leads to the serious problem of insufficient data. To address this, a realization of the low-complexity KT transform is presented, and it is implemented using only the Chirp-z transform (CZT) and fast Fourier transforms (FFT). Additionally, an Autoregressive (AR) model is proposed to compensate the insufficient data for each range, and the order of AR is estimated by the rank of the signal covariance matrix. Simulation results demonstrate that the proposed algorithm significantly reduces computational burden and improves the performance of wideband array beamforming.
Citation
Lin Wang, Yiyang Jiang, Yu Jiang, Baoli Tian, and Mingwei Shen, "Efficient Implementation of Aperture Fill Time Correction for Wideband Array Using the Low-Complexity Keystone Transform," Progress In Electromagnetics Research C, Vol. 136, 101-112, 2023.
doi:10.2528/PIERC23040801
References

1. Wang, J., D.-D. Cai, and F. Yang, "Aperture effect influence and analysis of wideband phased array radar," Procedia Engineering, Vol. 29, 1298-1303, 2012.
doi:10.1016/j.proeng.2012.01.130

2. Zhu, X. and Z. Kai, "A study on compensation of aperture fill time based on frequency-shifting," IET International Radar Conference, 2013.

3. Zhang, C. and Q. Lai, "Research on phased array radar affected by aperture fill time," Journal of Microwave Science, Vol. 33, No. 4, 67-69, 2017.

4. Wen, S., Q. Yuan, and E. Mao, "Digital compensation of aperture crossing time for wideband phased array radar Stretch processing," Journal of Electronics, Vol. 33, No. 6, 961-964, 2005.

5. Frost, III, O. L., "An algorithm for linearly constrained adaptive array processing," Proc. IEEE, Vol. 60, No. 8, 926-935, 1972.
doi:10.1109/PROC.1972.8817

6. Hoffman, A. and S. M. Kogon, "Subband STAP in wideband radar systems," Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No. 00EX410), 256-260, IEEE, 2000.
doi:10.1109/SAM.2000.878009

7. Godara, L. C., "Application of the fast Fourier transform to broadband beamforming," Journal of the Acoustical Society of America, Vol. 98, No. 1, 230-240, 1995.
doi:10.1121/1.413765

8. Bao, Z., M. Xing, and T. Wang, Radar Imaging Technology, Beijing Publishing House of Electronics Industry, 2005.

9. Yi, H., C. Y. Fan, J. G. Yang, et al. "Imaging and locating multiple ground moving targets based on Keystone transform and FrFT for single channel SAR system," 2nd Asian-Pacific Conference on Synthetic Aperture Radar (APSAR 2009), 2009.

10. Jiao, Z. and W. Zhang, "A novel detection method based on generalized Keystone transform and RFT for high-speed maneuvering target," International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 2015.

11. Candocia, F. and J. C. Principe, "Comments on ``Sinc interpolation of discrete periodic signals"," IEEE Transactions on Signal Processing, Vol. 46, No. 7, 2044-2047, 1998.
doi:10.1109/78.700979

12. Culha, O. and Y. Tanik, "Low complexity Keystone transform and radon Fourier transform utilizing chirp-z transform," IEEE Access, Vol. 8, 105535-105541, 2020.
doi:10.1109/ACCESS.2020.3000998

13. Zhu, D. and Z. Zhu, "Range resampling in the polar format algorithm for spotlight SAR image formation using the chirp z-Transform," IEEE Transactions on Signal Processing, Vol. 55, No. 3, 1011-1023, 2007.
doi:10.1109/TSP.2006.887144

14. Wang, T. T., "The segmented chirp Z-transform and its application in spectrum analysis," IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 2, 318-323, 1990.
doi:10.1109/19.52508

15. Liu, G., Y. Liu, C. Li, and X. Chen, "Weighted multisteps adaptive autoregression for seismic image denoising," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 9, 1342-1346, 2018.
doi:10.1109/LGRS.2018.2841840

16. Lu, J., Z. Xi, and M. Zhang, "MTD processing based on Keystone transform for LFMCW radar," Electronic and Automation Control Conference (IMCEC), Xi'an, China, 2016.

17. Jiang, Y., M. Shen, and G. Han, "An efficient ADBF algorithm based on Keystone transform for wideband array system," Progress In Electromagnetics Reacher Letters, Vol. 102, No. 20, 167-175, 2022.
doi:10.2528/PIERL21112605

18. Qian, Y., R. Yan, and S. Hu, "Bearing degradation evaluation using recurrence quantification analysis and kalman filter," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 11, 2599-2610, 2014.
doi:10.1109/TIM.2014.2313034

19. Goto, S., M. Nakamura, and K. Uosaki, "On-line spectral estimation of nonstationary time series based on AR model parameter estimation and order selection with a forgetting factor," IEEE Transactions on Signal Processing, Vol. 43, No. 6, 1519-1522, 1995.
doi:10.1109/78.388868