1. Wang, J., D.-D. Cai, and F. Yang, "Aperture effect influence and analysis of wideband phased array radar," Procedia Engineering, Vol. 29, 1298-1303, 2012.
doi:10.1016/j.proeng.2012.01.130
2. Zhu, X. and Z. Kai, "A study on compensation of aperture fill time based on frequency-shifting," IET International Radar Conference, 2013.
3. Zhang, C. and Q. Lai, "Research on phased array radar affected by aperture fill time," Journal of Microwave Science, Vol. 33, No. 4, 67-69, 2017.
4. Wen, S., Q. Yuan, and E. Mao, "Digital compensation of aperture crossing time for wideband phased array radar Stretch processing," Journal of Electronics, Vol. 33, No. 6, 961-964, 2005.
5. Frost, III, O. L., "An algorithm for linearly constrained adaptive array processing," Proc. IEEE, Vol. 60, No. 8, 926-935, 1972.
doi:10.1109/PROC.1972.8817
6. Hoffman, A. and S. M. Kogon, "Subband STAP in wideband radar systems," Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No. 00EX410), 256-260, IEEE, 2000.
doi:10.1109/SAM.2000.878009
7. Godara, L. C., "Application of the fast Fourier transform to broadband beamforming," Journal of the Acoustical Society of America, Vol. 98, No. 1, 230-240, 1995.
doi:10.1121/1.413765
8. Bao, Z., M. Xing, and T. Wang, Radar Imaging Technology, Beijing Publishing House of Electronics Industry, 2005.
9. Yi, H., C. Y. Fan, J. G. Yang, et al. "Imaging and locating multiple ground moving targets based on Keystone transform and FrFT for single channel SAR system," 2nd Asian-Pacific Conference on Synthetic Aperture Radar (APSAR 2009), 2009.
10. Jiao, Z. and W. Zhang, "A novel detection method based on generalized Keystone transform and RFT for high-speed maneuvering target," International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 2015.
11. Candocia, F. and J. C. Principe, "Comments on ``Sinc interpolation of discrete periodic signals"," IEEE Transactions on Signal Processing, Vol. 46, No. 7, 2044-2047, 1998.
doi:10.1109/78.700979
12. Culha, O. and Y. Tanik, "Low complexity Keystone transform and radon Fourier transform utilizing chirp-z transform," IEEE Access, Vol. 8, 105535-105541, 2020.
doi:10.1109/ACCESS.2020.3000998
13. Zhu, D. and Z. Zhu, "Range resampling in the polar format algorithm for spotlight SAR image formation using the chirp z-Transform," IEEE Transactions on Signal Processing, Vol. 55, No. 3, 1011-1023, 2007.
doi:10.1109/TSP.2006.887144
14. Wang, T. T., "The segmented chirp Z-transform and its application in spectrum analysis," IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 2, 318-323, 1990.
doi:10.1109/19.52508
15. Liu, G., Y. Liu, C. Li, and X. Chen, "Weighted multisteps adaptive autoregression for seismic image denoising," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 9, 1342-1346, 2018.
doi:10.1109/LGRS.2018.2841840
16. Lu, J., Z. Xi, and M. Zhang, "MTD processing based on Keystone transform for LFMCW radar," Electronic and Automation Control Conference (IMCEC), Xi'an, China, 2016.
17. Jiang, Y., M. Shen, and G. Han, "An efficient ADBF algorithm based on Keystone transform for wideband array system," Progress In Electromagnetics Reacher Letters, Vol. 102, No. 20, 167-175, 2022.
doi:10.2528/PIERL21112605
18. Qian, Y., R. Yan, and S. Hu, "Bearing degradation evaluation using recurrence quantification analysis and kalman filter," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 11, 2599-2610, 2014.
doi:10.1109/TIM.2014.2313034
19. Goto, S., M. Nakamura, and K. Uosaki, "On-line spectral estimation of nonstationary time series based on AR model parameter estimation and order selection with a forgetting factor," IEEE Transactions on Signal Processing, Vol. 43, No. 6, 1519-1522, 1995.
doi:10.1109/78.388868