Vol. 137
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-29
Low Complexity Irregular Clusters Tiling through Quarter Region Rotational Symmetry
By
Progress In Electromagnetics Research C, Vol. 137, 81-92, 2023
Abstract
In order to reduce the complexity and cost of an N×M large planar array from a practical point of view, firstly, the array matrix is divided into four equal N/4×M/4 quarter regions, and then only one quarter is selected to be optimized. After that, this selected quarter region is tiled with a few irregular polyomino clusters (IPC) and then rotating it to the other three-quarter regions. This method is called Quarter Region Rotational Symmetry (QRRS). The copy from the selected region is rotated by three angles 90,180 and 270 degrees respectively until the main planar array is filled. Two methods of feeding clusters based on amplitude only and phase only were used to reduce the complexity further. In addition, the complexity can bereduced more by applying the thinning technique with clusters or building clusters for a part of the planar array. A genetic algorithm (GA) is used to implement these ideas until a radiation pattern (RP) useful for modern applications. An additional constraint is included in the optimization process represented by a mask to cover the pattern according to the desired shape. The simulation results showed that the RP can be fully controlled by applying the QRRS technique successfully while reducing the complexity of the feeding network to only 2.25% in the amplitude-only and phase-only cases, and 1.75% and 1.5% in the thinning and partially tiling cases, respectively. Moreover, a detailed design of the feeding network circuit of the main planar array based on IPCis given for practical implementation.
Citation
Ahmed Jameel Abdulqader, "Low Complexity Irregular Clusters Tiling through Quarter Region Rotational Symmetry," Progress In Electromagnetics Research C, Vol. 137, 81-92, 2023.
doi:10.2528/PIERC23040604
References

1. Anselmi, N., P. Rocca, M. Salucci, and A. Massa, "Irregular phased array tiling by means of analytic schemata-driven optimization," IEEE Trans. Antennas Propag., Vol. 65, 4495-4510, 2017.
doi:10.1109/TAP.2017.2722539

2. Mohammed, J. R., A. J. Abdulqader, and R. H. Thaher, "Array pattern recovery under amplitude excitation errors using clustered elements," Progress In Electromagnetics Research M, Vol. 98, 183-192, 2020.
doi:10.2528/PIERM20101906

3. Abdulqader, A. J., R. H. Thaher, and J. R. Mohammed, "Array radiation pattern recovery under random errors using clustered linear array," Journal of Engineering and Sustainable Development (JEASD), Vol. 26, No. 1, 43-54, 2022.
doi:10.31272/jeasd.26.1.5

4. Abdulqader, A. J., J. R. Mohammed, and Y. A. Ali, "A T-shaped polyomino subarray design method for controlling sidelobe level," Progress In Electromagnetics Research C, Vol. 126, 243-251, 2022.
doi:10.2528/PIERC22080803

5. Abdulqader, A. J., A. N. Mahmood, and Y. E. M. Ali, "A multi-objective array pattern optimization via thinning approach," Progress In Electromagnetics Research C, Vol. 127, 251-261, 2022.
doi:10.2528/PIERC22101904

6. Mohammed, J. R., R. H. Thaher, and A. J. Abdulqader, "Linear and planar array pattern nulling via compressed sensing," Journal of Telecommunications and Information Technology, 50-55, 2021.
doi:10.26636/jtit.2021.152921

7. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
doi:10.2528/PIER07011204

8. Abdulqader, A. J., J. R. Mohammed, and R. H. Thaher, "Phase-only nulling with limited number of controllable elements," Progress In Electromagnetics Research C, Vol. 99, 167-178, 2020.
doi:10.2528/PIERC20010203

9. Rocca, P., G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies --- A review," Proc. IEEE, Vol. 104, No. 3, 544-560, Mar. 2016.
doi:10.1109/JPROC.2015.2512389

10. Haupt, R. L., Antenna Arrays: A Computational Approach, John Wiley & Sons, Hoboken, NJ, 2010.
doi:10.1002/9780470937464

11. Ahmed, J. A., R. M. Jafar, and H. T. Raad, "Unconventional and irregular clustered arrays," 1st International Ninevah Conference on Engineering and Technology (INCET2021), Vol. 1152, IOP Publisher, 2021.

12. Bencivenni, C., M. V. Ivashina, R. Maaskant, and J. Wettergren, "Synthesis of maximally sparse arrays using compressive sensing and full-wave analysis for global earth coverage applications," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4872-4877, Nov. 2016.
doi:10.1109/TAP.2016.2594840

13. Hall, P. S. and M. S. Smith, "Sequentially rotated arrays with reduced sidelobe levels," IEE Proc. Microw. Antennas Propag., Vol. 141, 321-325, Aug. 1994.
doi:10.1049/ip-map:19941193

14. Toyama, N., "Aperiodic array consisting of subarrays for use in small mobile earth stations," IEEE Trans. Antennas Propag., Vol. 53, No. 6, 2004-2010, Jun. 2005.
doi:10.1109/TAP.2005.848486

15. Mailloux, R. J., et al., "Irregular polyomino-shaped subarrays for spacebased active arrays," Int. J. Antennas Propag., Vol. 2009, Article ID 956524, 2009.

16. Rocca, P., et al., "GA-based optimization of irregular subarray layouts for wideband phased array design," IEEE Antennas Wireless Propag. Lett., Vol. 14, 131-134, 2015.
doi:10.1109/LAWP.2014.2356855

17. Spence, T. G. and D. H. Werner, "Design of broadband planar arrays based on the optimization of aperiodic tilings," IEEE Trans. Antennas Propag., Vol. 56, 76-86, Jan. 2008.
doi:10.1109/TAP.2007.913145

18. Desreux, S. and E. Remila, "An optimal algorithm to generate tilings," J. Discrete Alg., No. 4, 168-180, 2006.
doi:10.1016/j.jda.2005.01.003

19. Abdulqader, A. J., J. R. Mohammed, and R. H. Thaher, "Antenna pattern optimization via clustered arrays," Progress In Electromagnetics Research M, Vol. 95, 177-187, 2020.
doi:10.2528/PIERM20042307

20. Zare, A. S. and S. Baghaiee, "Application of ant colony optimization algorithm to pattern synthesis of uniform circular antenna array," ACES Journal, Vol. 30, No. 8, 810-818, Aug. 2021.

21. He, G., Y. Zhan, Y. Pei, and B. Wu, "Subarrayed antenna array synthesis using ternary adjusting method," International Journal of Antennas and Propagation, Vol. 2014, Article ID 898717, 5 pages, 2014.

22. Cetinkaya, S., L. Afeef, G. Mumcu, and H. Arslan, "Heuristic inspired precoding for millimeter-wave MIMO systems with lens antenna subarrays," 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 1-6, Helsinki, Finland, 2022.

23. Zhou, J., Y. Wang, Z. Wang, C. Pang, Y. Li, and X. Wang, "Irregular subarray tiling via rotational symmetry," IEEE Antennas Wireless Propag. Lett., 1-5, 2022.

24. Dong, W., Z.-H. Xu, X.-H. Liu, L.-S.-B. Wang, and S.-P. Xiao, "Irregular subarray tiling via heuristic iterative convex relaxation programming," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 2842-2852, 2020.
doi:10.1109/TAP.2019.2955070

25. Yang, S., W. Lyu, and Z.-P. Zhang, An off-grid compressive sensing strategy for the subarray synthesis of non-uniform linear arrays, ArXiv abs/2112.15343, 2021.

26. Mailloux, R. J., S. G. Santarelli, D. L. Roberts, and D. Luu, "Irregular polyomino-shaped subarrays for space-based active arrays," International Journal of Antennas and Propagation, Vol. 2009, Article ID 956524, 9 pages, 2009.