Vol. 133
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-06-04
Predictive Current Control of Permanent Magnet Synchronous Motor Based on Parameter Identification
By
Progress In Electromagnetics Research C, Vol. 133, 181-194, 2023
Abstract
Aiming at the unsatisfactory accuracy and speed of traditional parameter identification methods for permanent magnet synchronous motors (PMSM), a parameter identification method based on an improved hunter prey optimization (HPO) algorithm (Tent chaotic initialization and firefly algorithm HPO (TF-HPO)) was proposed. Using the Tent chaotic map, the initial individuals are evenly distributed to enrich their diversity, and the population position is updated using the firefly perturbation algorithm. Simulation and practical experiments show that compared with unmodified algorithm, the improved algorithm has faster convergence speed and higher recognition accuracy, and can effectively identify the parameters of the motor. On this basis, deadbeat predictive current control is implemented, effectively eliminating current static errors and improving the accuracy and stability of the current control system, and can effectively suppress motor torque ripple and current harmonics caused by parameter deviations.
Citation
Chengmin Wang, and Aiyuan Wang, "Predictive Current Control of Permanent Magnet Synchronous Motor Based on Parameter Identification," Progress In Electromagnetics Research C, Vol. 133, 181-194, 2023.
doi:10.2528/PIERC23032903
References

1. Wang, B., X. Chen, Y. Yu, et al. "Robust predictive current control with online disturbance estimation for induction machine drives," IEEE Transactions on Power Electronics, Vol. 32, No. 6, 4663-4674, 2016.
doi:10.1109/TPEL.2016.2602853

2. Wang, Y., X. Wang, W. Xie, et al. "Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3537-3547, 2017.
doi:10.1109/TIE.2017.2652338

3. Wang, B., X. Zhang, and H. B. Gooi, "An SI-MISO boost converter with deadbeat-based control for electric vehicle applications," IEEE Transactions on Vehicular Technology, Vol. 67, No. 10, 9223-9232, 2018.
doi:10.1109/TVT.2018.2853738

4. Wang, B., U. Manandhar, X. Zhang, et al. "Deadbeat control for hybrid energy storage systems in DC microgrids," IEEE Transactions on Sustainable Energy, Vol. 10, No. 4, 1867-1877, 2018.
doi:10.1109/TSTE.2018.2873801

5. Wang, P., Y. Bi, F. Gao, et al. "An improved deadbeat control method for single-phase PWM rectifiers in charging system for EVs," IEEE Transactions on Vehicular Technology, Vol. 68, No. 10, 9672-9681, 2019.
doi:10.1109/TVT.2019.2937653

6. Saeed, M. S. R., W. Song, B. Yu, et al. "Low-complexity deadbeat model predictive current control with duty ratio for five-phase PMSM drives," IEEE Transactions on Power Electronics, Vol. 35, No. 11, 12085-12099, 2020.
doi:10.1109/TPEL.2020.2983048

7. Cao, Y., R. Mao, L. Feng, et al. "Multiparameter identification of permanent magnet synchronous motors based on improved sparrow search algorithm," New Technology of Electrical Energy, Vol. 41, No. 05, 26-34, 2022.

8. Li, Y., X. Dong, H. Wei, et al. "Parameter identification of permanent magnet synchronous motors based on improved model reference adaptive systems," Control Theory and Application, Vol. 37, No. 09, 1983-1988, 2020.

9. Li, W. and Z. Du, "Parameter identification of permanent magnet synchronous motor based on improved grey wolf optimization algorithm," Modular Machine Tool and Automatic Machining Technology, Vol. 557, No. 07, 113-117, 2020.

10. Wu, Z., D. Yu, and X. Kang, "Parameter identification of solar cell models based on improved ant lion optimization algorithm," Acta Energiae Solaris Sinica, Vol. 40, No. 12, 3435-3443, 2019.

11. Liu, X., W. Hu, Y. Zou, et al. "Multi parameter identification of permanent magnet synchronous motors using improved particle swarm optimization," Journal of Electrical Machinery and Control, Vol. 24, No. 07, 112-120, 2020.

12. Turker, T., U. Buyukkeles, and A. F. Bakan, "A robust predictive current controller for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3906-3914, 2016.
doi:10.1109/TIE.2016.2521338

13. Wang, Z., A. Yu, X. Li, G. Zhang, and C. Xia, "A novel current predictive control based on fuzzy algorithm for PMSM," IEEE Journal of Emerging and Selected Topics in Power Electronics, 990-1001, 2019.
doi:10.1109/JESTPE.2019.2902634

14. Siami, M., D. A. Khaburi, M. Rivera, and J. Rodriguez, "An experimental evaluation of predictive current control and predictive torque control for a PMSM fed by a matrix converter," IEEE Transactions on Industrial Electronics, Vol. 64, No. 11, 8459-8471, 2018.
doi:10.1109/TIE.2017.2703658

15. El-Sousy, F. F. M., "Hybrid-based wavelet-neural-network tracking control for permanent-magnet synchronous motor servo drives," IEEE Transactions on Industrial Electronics, Vol. 57, No. 9, 3157-3166, 2010.
doi:10.1109/TIE.2009.2038331

16. Wang, Y., X. Wang, W. Xie, et al. "Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3537-3547, 2017.
doi:10.1109/TIE.2017.2652338

17. Wu, C., Y. Zhao, and M. Sun, "Multi-parameter online identification of permanent magnet synchronous motors using measured voltages," Proceedings of the CSEE, Vol. 40, No. 13, 4329-4340, 2020.

18. Wang, G., Current predictive control and current static error elimination algorithm for permanent magnet AC servo systems, Harbin Institute of Technology, 2014.

19. Naruei, I., F. Keynia, and A. Sabbagh Molahosseini, "Hunter-prey optimization: Algorithm and applications," Soft Computing, Vol. 26, 1279-1314, 2022.
doi:10.1007/s00500-021-06401-0

20. Xue, J., Research and application of a new swarm intelligence optimization technology, Donghua University, 2020.