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Predictive Current Control of Permanent Magnet Synchronous
Motor Based on Parameter Identification

Chengmin Wang* and Aiyuan Wang

Abstract—Aiming at the unsatisfactory accuracy and speed of traditional parameter identification
methods for permanent magnet synchronous motors (PMSMs), a parameter identification method
based on an improved hunter prey optimization (HPO) algorithm (Tent chaotic initialization and firefly
algorithm HPO (TF-HPO)) was proposed. Using the Tent chaotic map, the initial individuals are
evenly distributed to enrich their diversity, and the population position is updated using the firefly
perturbation algorithm. Simulation and practical experiments show that compared with unmodified
algorithm, the improved algorithm has faster convergence speed and higher recognition accuracy, and
can effectively identify the parameters of the motor. On this basis, deadbeat predictive current control
is implemented, effectively eliminating current static errors and improving the accuracy and stability
of the current control system, and can effectively suppress motor torque ripple and current harmonics
caused by parameter deviations.

1. INTRODUCTION

Permanent magnet synchronous motor (PMSM) is favored by all walks of life due to its advantages
such as small size, light weight, high power factor, and good speed regulation. The vector control
strategy, direct torque control strategy, and other control methods have been proposed and gradually
applied to permanent magnet synchronous motors, further improving the control effect of permanent
magnet synchronous motors. For example, deadbeat predictive current control has been widely used in
many fields due to its fast dynamic response and ease of digital implementation, such as three-phase
inverter control, induction motor current control [1], three-phase permanent magnet synchronous motor
torque control [2], BOOST converter control [3], DC microgrid hybrid energy storage system control [4],
single-phase pulse width modulation (PWM) inverter control [5], and five-phase permanent magnet
synchronous motor current control [6]. Therefore, the research and application of motor control systems
must master the relevant parameters of motor objects, such as motor stator resistance, AC/DC axis
inductance, and permanent magnet magnetic linkage. Due to the influence of working environment and
operation status, motor parameters will vary with factors such as temperature rise and magnetic field
saturation during motor operation. However, changes in motor parameters can affect the performance
of the control system, reduce system reliability, and may lead to unexpected control states.

Therefore, how to quickly and accurately identify the key parameters of PMSM has gradually
become one of the hot research directions to improve the stability of PMSM systems. In recent
years, scholars have combined advanced intelligent algorithms with parameter identification problems
to improve the accuracy of parameter identification in response to the shortcomings of traditional
parameter identification methods. Reference [7] mentions an identification method based on an improved
sparrow search algorithm. By adding a new algorithm, the accuracy of the algorithm is improved
while ensuring convergence accuracy. Reference [8] proposes an improved identification method for
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model reference adaptive systems, which overcomes the inaccuracy of identification results caused by
the under-ranking problem of the mathematical model of electrical machines by identifying multiple
parameters in steps. Reference [9] proposes an improved identification method based on the Grey Wolf
optimization algorithm, which has higher accuracy and better stability than the unmodified algorithm.
Reference [10] proposes an improved ant lion algorithm identification method, which improves the
local optimization ability of the algorithm and greatly improves the accuracy and speed of parameter
identification. Reference [11] proposes a parameter identification method based on an improved particle
swarm optimization algorithm. The authors have proved through experiments that the algorithm has
high recognition accuracy and fast convergence speed, while retaining the accuracy and robustness of
the algorithm. Reference [12] proposes a new predictive current control strategy with high parameter
robustness, which improves the robustness of motor control systems. The deadbeat model predictive
control strategy has fast dynamic response, but its control accuracy is affected by the motor model.
However, when the control system encounters parameter mismatches, the system performance will be
reduced. Reference [13] proposes a current predictive control method based on a fuzzy algorithm. This
control strategy adjusts the weight coefficient of the compensation link in real time according to the
operating state of the motor and the mismatch of the controller’s model parameters. This method can
improve the control performance when the model parameters do not match. Reference [14] introduces
the methods and results of comprehensive comparison between predictive current control and predictive
torque control techniques in permanent magnet synchronous motors, and analyzes and compares the
fluctuations in torque and stator flux, total harmonic distortion of input and output currents, and
resonant characteristics of input filters. Reference [15] proposes a novel robust motion control system
for permanent magnet synchronous motors based on wavelet neural networks. This control system
combines the online learning ability of neural networks and the parameter identification ability of wavelet
decomposition, improving the robustness of the system, while overcoming the influence of parameter
uncertainties in the control drive process. However, the neural network algorithm has the problems of
large computational load and long computational cycle, which limits the application scenarios of the
algorithm. Reference [16] combines deadbeat current predictive control with this method. Firstly, based
on the predictive equation of deadbeat current predictive control, a theoretically optimal voltage vector
is calculated, and then an evaluation function is used to compare the voltage vector with the adjacent
voltage vector. The one with the best evaluation function is selected as the control voltage of the
inverter. Reference [17] proposes a multi-parameter online identification method that replaces a given
voltage with a measured voltage, taking into account the under-ranking problem of the identification
matrix. This method uses recursive least squares step-by-step identification to identify four parameters,
namely, stator winding resistance, d-axis and q-axis inductances, and rotor permanent magnet flux
linkage. However, the least square algorithm is susceptible to noise interference, which will reduce the
accuracy of the identification results.

In this paper, a parameter identification method based on improved HPO algorithm (TF-HPO)
is proposed, and on this basis, predictive current control for PMSM is implemented. Compared to
other algorithms, this algorithm has faster convergence speed, higher accuracy, and higher parameter
identification accuracy, resulting in higher accuracy of motor predictive current control.

This paper consists of five sections. In the second section, the mathematical model of PMSM and
the deadbeat current predictive control model are established, and the principle of motor parameter
identification is presented. In the third section, the HPO algorithm and optimization process are
expounded. In the fourth section, the differences between the algorithms are compared through standard
functions, and the advantages of predictive current control based on improved parameter identification
algorithm are verified through simulation and experiments. In the fifth section, the research results of
this article are summarized.

2. DEADBEAT PREDICTIVE CURRENT CONTROL MODEL

2.1. PMSM Mathematical Model

The mathematical model of permanent magnet synchronous motor in three-phase static coordinate
system is relatively complex, and corresponding coordinate transformation is required to simplify
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its mathematical model. To establish a permanent magnet synchronous motor model, the following
assumptions are often made:

(i) Ignore motor core saturation.

(ii) Ignore eddy current losses and hysteresis losses.

(iii) The back electromotive force of the motor is a sine wave.

(iv) The rotor does not have a damping winding.

Based on the above assumptions, the stator voltage equation of PMSM in synchronous rotating
coordinate system is obtained, as shown in Equation (1):
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where ud, uq, id, iq, Ld, Lq are the voltage, current, and inductance of the d and q axes, respectively;
Rs is the stator resistance; ψf is the permanent magnet magnetic chain; ωe is the electrical angular
velocity of the rotor.

2.2. Deadbeat Predictive Current Control Model

The principle of predictive current control algorithm is to predict the motor current at the next moment
based on the discrete mathematical models of the motor and inverter, and accurately control the motor
current in a very short time. Therefore, the dynamic response speed of the current loop is fast, and
the motor current harmonics are small, which makes the motor torque and servo system have excellent
control effect and good response speed. In addition, the concept of predictive current control is simple
and intuitive, and the control algorithm is easy to implement.

Deadbeat current control originates from discrete linear state feedback control, which allows the
feedback current to track a given current for a limited time. Its principle is to compare the motor current
obtained by over sampling with the given current through coordinate transformation. The comparison
result is controlled by a deadbeat current controller, and the output voltage is subjected to coordinate
transformation. Then, an inverter switching pulse signal is generated through the space vector PWM
(SVPWM). Compared with traditional current controllers, proportional-integral (PI) controllers are
replaced by deadbeat controllers, which have the advantages of constant switching frequency, fast
dynamic response, high bandwidth, small current fluctuations, and easy implementation.

According to the voltage equation, select the motor current as the state variable, and when the
motor is a surface mounted permanent magnet synchronous motor, the motor inductance Ld=Lq=L,
then the state space function is obtained, as shown in Equation (2):
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And rewrite this equation into the form of a standard state space function, as shown in Equation (3):
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In permanent magnet synchronous motor control systems, the current sampling period is relatively
short. The first order Taylor equation is used to discretize the current state equation, and the differential
term of the original current state equation can be approximated as shown in Equation (4):
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where Ts is the current sampling period; id(k), iq(k), id(k+1), iq(k+1) are the sampling value of the
d-axis and q-axis current at the k and k+1 moments of the motor, respectively. The discretized current
prediction equation for permanent magnet synchronous motors can be obtained by bringing Equation (4)
into Equation (3), as shown in Equation (5):[
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]
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.

Deadbeat predictive current control is a type of predictive current control, characterized in that the
given current of the system is taken as the current of the system at the next moment, so as to achieve
the output current of the system to keep up with the given current at the next moment. In order to
achieve a deadbeat of the system current, the predicted currents of d-axis id(k+1) and q-axis iq(k+1)
at the moment k + 1 in Equation (5) are replaced by the given d-axis current i∗d(k) and q-axis current
i∗q(k) of the system, to obtain the reference voltage at this time, as shown in Equation (6):[
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2.3. Principle of Parameter Identification

Parameter identification of permanent magnet synchronous motor is an inverse problem, which is to
determine the required parameters based on experimental data and established models. According
to the voltage equation, the parameters to be identified include stator resistance, stator inductance,
and permanent magnet flux linkage. The voltage equation is a two-dimensional equation set, so the
equation set lacks rank, and the solution is not unique, resulting in inability to accurately identify
the three parameters. According to research, the influence of deviation of resistance parameters on
predictive current control can be negligible [18]. Therefore, this paper only identifies the inductance
and flux linkage parameters of the motor, so that the equations are fully ranked.

Design a model with the same structure and adjustable parameters based on the reference model
of the motor, as shown in Equation (7):
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where L̂sΨ̂f is the parameter to be identified, and îd and îq are the stator voltage input on the dq axis
of the actual PMSM model.

Using an objective function to evaluate both outputs, the parameter identification algorithm
continuously adjusts the model parameters. Repeat the above process until the fitness value reaches
the minimum, and the identified parameter L can be considered. L̂sΨ̂f is equivalent to the theoretical
motor model parameters. The fitness function is defined as shown in Equation (8):

f
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The schematic diagram of parameter identification is shown in Figure 1.

3. TF-HPO ALGORITHM

3.1. Hunter Prey Optimization Algorithm

Hunter prey optimization algorithm is a novel swarm intelligence optimization algorithm proposed by
Naruei et al. in 2022 [19]. Inspired by the fact that hunters attack individuals far away from the prey
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Figure 1. The flowchart of the TF-HPO algorithm.

population and constantly adjust their position by referring to the average population position of the
prey. At the same time, the prey will constantly adjust its position, making itself tend to a safer
position.

3.1.1. Initialize Population Members

Set them to (x⃗) = {x⃗1,x⃗2, . . . ,x⃗n}. The objective function of the members in the population is expressed

as O⃗ = {O1, O2, . . . ,On}; position of each member i is randomly generated in the search space; the
equation is as follows:

xi=rand (1,d) ∗ (ub−lb)+lb (9)

where xi is the location of the prey, lb the minimum value (lower bound) of the problem variable, ub the
maximum value (upper bound) of the problem variable, and d the number (dimension) of the problem
variable.

3.1.2. Predator Search Strategy

Hunters often choose prey that is far away from the group as their hunting target, which tends to be
highly random. The equation for updating the hunter’s position is as follows:

xi,j (t+ 1) = xi,j (t) + 0.5
[(
2CZPpos(j) − xi,j (t)

)
+ (2 (1− C)Z · γ (j)− xi,j (t))

]
(10)

where xi,j(t) is the current position of the predator, xi,j(t+1) the updated location of the predator, Ppos
the location of the prey, γ(j) the average of all locations, Z an adaptive parameter, and C a balance
parameter between exploration and development. The calculation equation for C, Z, and γ(j) are as
follows:

C = 1− ω

(
0.98

ωmax

)
(11)

P = R⃗1 < C (12)

U = (P == 0) (13)

Z = R2 ⊗ U + R⃗3 ⊗ (∼ U) (14)

γ =
1

n

n∑
i=1

x⃗i (15)

where ω is the current number of iterations, and ωmax is the maximum number of iterations. R⃗1 and R⃗3

are random vectors within the range of [0, 1]; R2 is a random number; P is a random vector related to

the number of variables; and U is the index value of the vector R⃗1 that satisfies the condition (P == 0).
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In order to solve the convergence delay caused by considering the maximum distance between
members and the average position in each iteration, a decreasing mechanism is introduced, and the
equation for calculating the prey position is:

P⃗pos = x⃗i|a is sorted Deuc (kbest) , kbest = round (C ×N) (16)

where Deuc(k) is the Euclidean distance from the average position of each member, kbest a decreasing
mechanism, and N the number of search agents.

3.1.3. Prey Escape Strategy

In the algorithm, when the prey is attacked, it will try to escape to a safe position, assuming that the
safest position is the global best position, so that the prey can have a chance to survive. The equation
for updating prey position is as follows:

xi,j (t+ 1) = Hpos + C · Z cos (2πR4)× (Hpos − xi,j (t)) (17)

where Hpos is the globally optimal position, and R4 is the random number in the range of [−1, 1]. The
cos function locates the next prey position in the globally optimal position with different radials and
angles, thus improving the performance in the development phase.

3.1.4. The Choice between Hunter and Prey

In order to select hunter and prey, the corresponding selection mechanism is given by combining
Equations (10) and (17), and the equation is as follows:

xi,j (t+ 1) =

{
xi,j (t) + 0.5

[(
2CZPpos(j) − xi,j (t)

)
+ (2 (1− C)Z · γ (j)− xi,j (t))

]
R5 < δ (18a)

Hpos + C · Z cos (2πR4)× (Hpos − xα,β (t)) R5 ≥ δ (18b)

where R5 is a random number within the range of [0, 1], and δ is an adjustment parameter.

3.2. Tent Chaotic Initialization

Due to good ergodic uniformity and convergence speed, Tent chaotic mapping is used to optimize the
hunter-prey algorithm, and the equation is as follows:

Zi+1 =


2 · Zi+1 0 ≤ Zi ≤

1

2

2 · (1− Zi)
1

2
≤ Zi ≤ 1

(19)

Xi = Dmin + (Dmax −Dmin) · Zi (20)

where Zi is the ith chaotic sequence; Z1 is one dimensional vector composed of D numbers by uniform
random number in [0, 1); Xi is the location information of the ith hunter, where i = 1, 2, . . . , n; Dmin

and Dmax are the lower and upper bounds of the feasible region, respectively.

3.3. Firefly Algorithm

Firefly algorithm is a heuristic optimization algorithm inspired by nature [20]. The authors’ inspiration
comes from the flickering behavior of fireflies. The main purpose of firefly flash is as a signal system to
attract other fireflies.

The hypothesis is: fireflies are gender neutral; each firefly will be attracted by the brighter firefly;
and the attraction is proportional to their brightness. For any two fireflies, the less bright firefly is
attracted, so it moves to the brighter one, but the brightness decreases with the increase of its distance.
If a brighter firefly is not found, it will move randomly.

In the D-dimensional solution space, the position of each firefly is as follows:

X =(x1,x2. . .xD) (21)
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The relative fluorescence brightness of fireflies is as follows:

I=I0·e−γri,j (22)

where I0 is the maximum fluorescent brightness of the firefly, which is related to the objective function
value. The better the objective function value is, the higher its brightness is. γ is the light intensity
absorption coefficient; the fluorescence will be gradually weakened with the increase of distance and the
absorption of the media; ri,j is the spatial distance between fireflies i and j.

The relative attraction between fireflies is determined by the following equation:

βfa=β0·e−γr
2
i,j (23)

where β0 is the maximum attraction.
The position update equation of firefly i attracted to firefly j is as follows:

Xi=Xi+βfa (xj−xi)+α ·
(
Q−1

2

)
(24)

where xi and xj are the spatial positions of fireflies i and j; α ∈ (0, 1] is the step factor, which is taken
as 0.4 in this paper; Q is a random number subject to uniform distribution in [0, 1].

3.4. Process of TF-HPO Algorithm

The flowchart of the TF-HPO algorithm is shown in Figure 2.

3.5. Parameter Identification Based on TF-HPO Algorithm

The system block diagram of predictive current control based on parameter identification is shown in
Figure 3.

4. SIMULATION AND EXPERIMENTAL VERIFICATION

4.1. Algorithm Performance Test

In order to test the effectiveness of the improved algorithm, five standard test functions are selected to
verify the improved algorithm, and compared with HPO algorithm, Particle Swarm Optimization (PSO)
algorithm, Harris hawks optimization (HHO) algorithm, and Whale Optimization Algorithm (WOA).
The first three functions are unimodal functions, and the last two functions are multimodal functions.
The standard test function information is shown in Table 1. The results of algorithm optimization and
comparison experiments are shown in Table 2. The best value, worst value, average value, and standard
deviation of each algorithm in the test function are listed. Each algorithm will be run 20 times, with the
average and standard deviation as evaluation criteria. The smaller the average and standard deviation
are, the better the performance is.

Table 1. Standard test function.

Num. Function Dim. Range Fmin

1 F1(x) =
∑n

i=1

(∑i
j=1 xj

)2
30 [−100, 100] 0

2 F2(x) = max {|xi| , 1 ≤ i ≤ n} 30 [−100, 100] 0

3 F3 (x) =
∑n

i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)2

]
30 [−30, 30] 0

4 F4 (x) = −20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos (2πxi)

)
+20+e 30 [−32, 32] 0

5 F5 (x) =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
+ 1 30 [−600, 600] 0
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Figure 2. The flowchart of the TF-HPO algorithm.

4.2. Simulation Results and Analysis

In order to verify the performance of predictive current control based on TF-HPO algorithm, a
simulation model was built in the MATLAB/SIMULINK environment. The motor parameters used
are shown in Table 3.

The results and errors of each identification algorithm are shown in Table 4.
It can be seen from Table 4 that some of the basic algorithms compared are prone to falling into local

optima, resulting in larger accuracy errors. After calculation, the maximum error rate of inductance
parameter identification is 6.77%, and the maximum error rate of magnetic flux identification is 7.3%.
However, the error rates of inductance and magnetic flux identification based on the improved TF-HPO
algorithm are 2.1% and 1.9%, respectively, which reflects the advantages of the improved algorithm
such as good robustness, high identification accuracy, fast convergence speed, and difficulty in falling
into local optimal solutions.

Compare the dynamic response performance and steady-state performance of the system before
and after adding the parameter identification module. The response of the current and rotational speed
of the d axis and q axis of the system are shown in Figure 4 and Figure 5.

After powering on, the initial load of the given system is 0N ·m, the initial rotational speed set
to 1000rpm, and a step torque of 10N ·m applied at 0.2 S. After adding the parameter identification
algorithm, the system speed collapse is not obvious and has excellent resistance to load disturbances.
The currents of d axis and q axis have a relatively large current ripple for an extremely short time when
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Table 2. The results of algorithm optimization and comparison experiments.

Function TF-HPO HPO PSO HHO WOA

F1

worst 2.125e-144 0.0014177 1655.3088 1.9747e-73 77911.2649

best 4.8337e-159 6.368e-09 144.4169 7.5816e-97 22160.2961

avg 7.0978e-146 0.0001089 705.5008 7.3121e-75 49304.8815

std 3.8795e-145 0.00027107 374.0712 3.6064e-74 13888.0351

F2

worst 1.9138e-76 1.5538 9.222 4.1015e-48 90.8896

best 4.679e-83 0.018393 2.6354 2.2482e-64 0.63375

avg 2.0117e-77 0.3713 5.5958 2.8774e-49 48.1807

std 5.0094e-77 0.3628 1.7375 8.865e-49 25.9539

F3

worst 26.0057 32.6867 3265.9273 0.046694 28.7441

best 23.1074 26.4304 395.2169 2.1425e-05 27.1566

avg 23.6597 28.5989 1310.819 0.011778 27.9145

std 0.56852 0.98266 709.752 0.013516 0.45396

F4

worst 8.8818e-16 8.8818e-16 1.5447e-04 1.7918 8.8818e-16

best 8.8818e-16 8.8818e-16 2.7383 14.2214 7.9936e-15

avg 8.8818e-16 8.8818e-16 1.1543 5.7800 3.8488e-15

std 0 0 0.8514 2.9934 2.8119e-15

F5

worst 0 0 2.932e-07 0.0105 0

best 0 0 0.2670 0.2054 0

avg 0 0 0.031 0.0864 0

std 0 0 0.0381 0.0375 0

Table 3. Main parameters of the motor.

parameter numerical value

sampling period/s 10e-6

stator resistance/Ω 0.958

Q axis inductance Lq/mH 12

D axis inductance Ld/mH 12

flux linkage ψf/Wb 0.1827

number of pole pairs Pn 4

Rotational inertia J/(kg ·m2) 0.003

Table 4. The results and errors of each identification algorithm.

Parameter TF-HPO HPO PSO HHO WOA

Stator d-axis and q-axis inductance/mH 11.748 11.676 11.064 11.448 11.5908

Error/% 2.1 2.7 6.77 4.66 3.41

Permanent magnet flux linkage/Wb 0.17923 0.1766 0.1694 0.1741 0.1761

Error/% 1.9 3.4 7.3 4.7 3.6
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Figure 3. Block diagram of predictive current control based on parameter identification.

(a) (b)

Figure 4. Current response. (a) Predictive current control with parameter identification. (b) Predictive
current control without parameter identification.

the motor starts. This is because the parameter identification algorithm requires a certain convergence
time, and the parameter fluctuation before convergence is large, resulting in an increase in current ripple.
Subsequently, there is no static difference between the reference current and the response currents of
the d axis and q axis, and the torque ripple is reduced.

4.3. Experimental Results and Analysis

In order to verify the effectiveness of this method, an experimental verification of the predictive current
control method based on parameter identification is carried out on the experimental platform shown in
Figure 6. The platform mainly includes a multifunctional digital signal processing (DSP) motor control
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(a) (b)

Figure 5. Motor speed. (a) Predictive current control with parameter identification. (b) Predictive
current control without parameter identification.

driver board, an upper computer, a 24V switching power supply, and a PMSM. The control chip of the
driver board adopts TMS320F28335, and the power supply voltage of the control board is 24V. The
motor parameters used in this experiment are consistent with the simulation motor parameters. The
identification results are shown in Figure 7.

By adding a parameter identification algorithm to the predictive current control experiment and
comparing the output effects before and after adding the algorithm, considering that parameter changes
have little impact on the rotational speed of the motor, only the steady-state current and torque
waveforms are compared here. The experimental results are shown in Figure 8 and Figure 9.

As shown in Figure 8, by comparing the changes in the waveform of the A-phase current before
and after the addition of the parameter identification algorithm, it can be seen that there is significant
distortion in the motor phase current near the peak and valley, and the overall waveform is not smooth
enough. After the addition of the parameter identification algorithm, the total harmonic content of the
current is reduced from 17.34% to 9.72%. As shown in Figure 9, after adding an improved parameter
identification algorithm module, the torque ripple under steady-state conditions was reduced from
1.3N·m to 0.7N ·m, and the smoothness of the torque was improved, verifying the improvement effect
of the parameter identification algorithm on the steady-state performance of the system in predictive
current control.

Switching Mode

Power Supply

PMSM
Upper control

computer

Control 

board

Figure 6. The experimental platform.
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(a) (b)

Figure 7. Results of parameter identification. (a) Parameter identification of inductance. (b)
Parameter identification of magnetic linkage.
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Figure 8. Experimental diagram of A-phase current. (a) Predictive current control with parameter
identification. (b) Predictive current control without parameter identification.
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Figure 9. Experimental diagram of torque. (a) Predictive current control with parameter identification.
(b) Predictive current control without parameter identification.
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5. CONCLUSIONS

Due to the complexity and nonlinear nature of permanent magnet synchronous motor systems, it is
difficult to obtain high-precision identification results using conventional methods due to the existence
of local extremum points in the optimization function. This paper proposes a parameter identification
method for permanent magnet synchronous motors based on an improved HPO algorithm, constructs
a PMSM parameter identification model, and optimizes it using the improved HPO algorithm. The
following conclusions have been drawn from the results obtained through simulation and experiments.

(i) In this paper, improvements were made to the HPO algorithm, and the superiority of the improved
HPO algorithm over other algorithms was verified through standard function testing.

(ii) In this paper, a parameter identification model based on the improved HPO algorithm was
established. Through experiments, it was found that the inductance identification error was only
2.1%, and the flux identification error was only 1.9%. Compared with parameter identification
models under other algorithms, it was verified that the parameter identification model based on
the TF-HPO algorithm has better robustness, faster convergence speed, and higher accuracy.

(iii) By adding a parameter identification module, the distortion of the phase current under predictive
current control has been effectively improved. The total harmonic content of the current has
decreased from 17.34% to 9.72%. The torque ripple of the motor has been reduced from 1.3N·m
to 0.7N ·m, effectively suppressing torque ripple and current distortion caused by motor parameter
deviations while improving the dynamic response performance of the system, with good control
results.
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