Vol. 133
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-05-08
Nonuniform Structured Waveguides. WKB Approach
By
Progress In Electromagnetics Research C, Vol. 133, 1-13, 2023
Abstract
The results of the development of an approximate approach for describing structured waveguides, which can be considered as an analogue of the WKB method, are presented. This approach gives possibility to divide the electromagnetic field in structured waveguides with slow varying geometry into forward and backward components and simplify the analysis of the field characteristics, especially the phase distribution. The accuracy of this method was estimated by comparing the solution of the approximate system of equations with the solution of the general system of equations. For this, a special code was written that combines the proposed approach with the more accurate one developed earlier. For the case of fast damping of evanescent waves, a simple solution of the matrix equations is obtained. Based on this approach, the possibility of correcting the phase distribution in a chain of coupled resonators has been studied.
Citation
Mykola I. Ayzatsky, "Nonuniform Structured Waveguides. WKB Approach," Progress In Electromagnetics Research C, Vol. 133, 1-13, 2023.
doi:10.2528/PIERC23032606
References

1. Schnitzer, O., "Waves in slowly varying band-gap media," SIAM Journal on Applied Mathematics, Vol. 77, No. 4, 1516-1535, 2017.
doi:10.1137/16M110784X

2. Pereyaslavets, M., M. Sorella Ayza, B. Z. Katsenelenbaum, and L. Mercader Del Rio, Theory of Nonuniform Waveguides, IEE, 1998.
doi:10.1049/PBEW044E

3. Rulf, B., "An asymptotic theory of guided waves," Journal of Engineering Mathematics, Vol. 4, No. 3, 261-271, 1970.
doi:10.1007/BF01534885

4. Hashimoto, M., "Asymptotic vector modes of inhomogeneous circular waveguides," Radio Science, Vol. 17, No. 1, 3-9, 1982.
doi:10.1029/RS017i001p00003

5. Marcuse, D., Theory of Dielectric Optical Waveguides, 2nd Ed., Academic Press, 1991.

6. Skorobogatiy, M. A., M. Ibanescu, E. Lidorikis, J. D. Joannopoulos, S. G. Johnson, and P. Bienstman, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Physical Review E, Vol. 66, 066608, 2002.

7. Noda, S., J. D. Joannopoulos, S. P. Boyd, S. G. Johnson, A. Oskooi, and A. Mutapcic, "Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides," Optics Express, Vol. 20, No. 19, 21558, 2012.
doi:10.1364/OE.20.021558

8. Ayzatsky, M. I., "Model of finite inhomogeneous cavity chain and approximate methods of its analysis," Problems of Atomic Science and Technology, No. 3, 28-37, 2021.
doi:10.46813/2021-133-028

9. Amari, S., R. Vahldieck, J. Bornemann, and P. Leuchtmann, "Spectrum of corrugated and periodically loaded waveguides from classical matrix eigenvalues," IEEE Trans. Microw. Theory and Tech., Vol. 48, No. 3, 453-459, 2000.
doi:10.1109/22.826846

10. Ayzatsky, M. I., "Inhomogeneous travelling-wave accelerating sections and WKB approach," Problems of Atomic Science and Technology, No. 4, 43-48, 2021.
doi:10.46813/2021-134-043

11. Ayzatsky, M. I., "Modification of coupled integral equations method for calculation the accelerating structure characteristics," Problems of Atomic Science and Technology, No. 3, 56-61, 2022.
doi:10.46813/2022-139-056

12. Ayzatsky, M. I., "Fast code CASCIE (Code for Accelerating Structures --- Coupled Integral Equations). Test results,", https://doi.org/10.48550/arXiv.2209.11291, 2022.

13. Ayzatsky, M. I., "Transformation of the linear difference equation into a system of the first order difference equations," Problems of Atomic Science and Technology, No. 4, 76-80, 2019.
doi:10.46813/2019-122-076

14. Neal, R. B., The Stanford Two-mile Accelerator, W. A. Benjamin, 1968.

15. Khabiboulline, T., V. Puntus, M. Dohlus, N. Holtkamp, G. Kreps, S. Ivanov, and K. Jin, "A new tuning method for traveling wave structures," Proceedings of PAC 95, 1666-1668, 1995.

16. Ayzatsky, M. I. and E. Z. Biller, "Development of inhomogeneous disk-loaded accelerating waveguides and RF-coupling," Proceedings of LINAC 96, 119-121, 1996.