1. Ciarlet, P. G., Handbook of Numerical Analysis, Numerical Methods in Electromagnetics, Vol. XIII, Elsevier, 2005.
2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2000.
3. Liu, G. R. and Y. T. Gu, An Introduction to Meshfree Methods and Their Programming, Springer, 2005.
4. Kaufmann, T., Y. Yu, C. Engstrom, Z. Chen, and C. Fumeaux, "Recent developments of the meshless radial point interpolation method for time-domain electromagnetics," Int. J. Numer. Model., Vol. 25, 468-489, 2012.
doi:10.1002/jnm.1830
5. Kaufmann, T., C. Engstrom, and C. Fumeaux, "Residual-based adaptive refinement for meshless eigenvalue solvers," International Conference in Electromagnetics on Advanced Applications, 244-247, IEEE, Sydney, Australia, 2010.
6. Alaa, G., E. Francomanob, A. Tortoricib, E. Toscanob, and F. Violaa, "Smoothed particle electromagnetics: A Mesh-free solver for transients," Journal of Computational and Applied Mathematics, Vol. 191, 194-205, 2006.
doi:10.1016/j.cam.2005.06.036
7. Schweitzer, M. A., A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations, Springer, 2003.
doi:10.1007/978-3-642-59325-3
8. Atluri, S. N. and S. Shen, "The Meshless Local Petrov-Galerkin (MLPG) method: A simple & less-costly alternative to the finite element and boundary element methods," CMES, Vol. 3, No. 1, 11-51, 2002.
9. Juntunen, J. S. and T. D. Tsiboukis, "Reduction of numerical dispersion in FDTD method through artificial anisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, Apr. 2000.
doi:10.1109/22.842030
10. Wang, S. and F. L. Teixeira, "Dispersion-relation-preserving FDTD algorithms for large-scale three-dimensional problems," IEEE Trans. on Ant. and Prop., Vol. 51, No. 8, 1818-1828, Aug. 2003.
doi:10.1109/TAP.2003.815435
11. Nehrbass, J. W., J. O. Jevtic, and R. Lee, "Reducing the phase error for finite-difference methods without increasing the order," IEEE Trans. on Ant. and Prop., Vol. 46, No. 8, 1194-1201, Aug. 1998.
doi:10.1109/8.718575
12. Cole, J. B., "A high-accuracy realization of the Yee algorithm using non-standard finite differences," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 991-996, Jun. 1997.
doi:10.1109/22.588615
13. Forgy, E. A. and W. C. Chew, "A time-domain method with isotropic dispersion and increased stability on an overlapped lattice," IEEE Trans. on Ant. and Prop., Vol. 50, 983-996, Jul. 2002.
14. Yu, Y. and Z. Chen, "A 3-D radial point interpolation method for meshless time-domain modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, 2015-2020, Aug. 2009.
doi:10.1109/TMTT.2009.2025450
15. Lee, J. F., R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Trans. on Ant. and Prop., Vol. 45, No. 3, 430-442, Mar. 1997.
doi:10.1109/8.558658
16. Naamen, H. and T. Aguili, "Unconditional stability analysis of the 3D-radial point interpolation method and Crank-Nicolson scheme," Progress In Electromagnetics Research M, Vol. 68, 119-131, 2018.
17. Jose, A. P., G. Ana, G. Oscar, and V. Angel, "Analysis of two alternative ADI-FDTD formulations for transverse-electric waves in lossy materials," IEEE Trans. on Ant. and Prop., Vol. 57, No. 7, 2047-2054, Jul. 2009.
18. Naamen, H., A. B. H. Hamouda, and T. Aguili, "Anisotropy analysis of the 3D-radial point interpolation method in lossy media," Progress In Electromagnetics Research C, Vol. 128, 207-218, 2023.
19. Harrington, R. F., Time Harmonic Electromagnetic Fields, IEEE Press Series on Electromagnetic Wave Theory, Wiley-Interscience, 2001.
doi:10.1109/9780470546710
20. Koh, I. S., H. Kim, J. Mi. Lee, J. G. Yook, and C. S. Pil, "Novel explicit 2-D FDTD scheme with isotropic dispersion and enhanced stability," IEEE Trans. on Ant. and Prop., Vol. 54, No. 11, Nov. 2006.
21. Fu, W. and E. L. Tan, "Stability and dispersion analysis for ADI-FDTD method in lossy media," IEEE Trans. on Ant. and Prop., Vol. 55, No. 4, Apr. 2007.
doi:10.1109/TAP.2007.893378
22. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, 2005.