Vol. 133
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-05-27
Adaptive Anisotropy Optimization Method for the Radial Point Interpolation Method in Lossy Media
By
Progress In Electromagnetics Research C, Vol. 133, 97-107, 2023
Abstract
In this paper, we present a new numerical anisotropy optimization method for the three-dimensional (3D) radial point interpolation method (RPIM) in lossy media. Instead of evaluating the parameters of the artificial anisotropy or the scaling factors along the selected axes, as it is usually done in classical optimization algorithms, once the analytical expressions of these parameters have been determined, they are assigned at each node through their shape functions. By adaptive factor, we mean that its value varies in such a way to cancel the discrepancy between numerical and exact wavenumbers at each node. Doing such optimization at each node is indeed being possible during the calculation of these parameters by the RPIM dispersion relation. Therefore the numerical anisotropy is no longer optimized by averaging over the entire Cartesian grid but in each node direction. The RPIM numerical anisotropy adaptive optimization method (AOM) in lossy media is presented, and the theoretical adaptive factors are given as functions of nodes positions. Our results show that the numerical errors of the dispersion and the anisotropy are considerably reduced, after being optimized with the AOM. The proposed AOM scheme is applied for a 3D rectangular cavity in order to test its validity and evaluate the accuracy of the numerical results of our approach.
Citation
Hichem Naamen, Ajmi Ben Hadj Hamouda, and Taoufik Aguili, "Adaptive Anisotropy Optimization Method for the Radial Point Interpolation Method in Lossy Media," Progress In Electromagnetics Research C, Vol. 133, 97-107, 2023.
doi:10.2528/PIERC23031501
References

1. Ciarlet, P. G., Handbook of Numerical Analysis, Numerical Methods in Electromagnetics, Vol. XIII, Elsevier, 2005.

2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2000.

3. Liu, G. R. and Y. T. Gu, An Introduction to Meshfree Methods and Their Programming, Springer, 2005.

4. Kaufmann, T., Y. Yu, C. Engstrom, Z. Chen, and C. Fumeaux, "Recent developments of the meshless radial point interpolation method for time-domain electromagnetics," Int. J. Numer. Model., Vol. 25, 468-489, 2012.
doi:10.1002/jnm.1830

5. Kaufmann, T., C. Engstrom, and C. Fumeaux, "Residual-based adaptive refinement for meshless eigenvalue solvers," International Conference in Electromagnetics on Advanced Applications, 244-247, IEEE, Sydney, Australia, 2010.

6. Alaa, G., E. Francomanob, A. Tortoricib, E. Toscanob, and F. Violaa, "Smoothed particle electromagnetics: A Mesh-free solver for transients," Journal of Computational and Applied Mathematics, Vol. 191, 194-205, 2006.
doi:10.1016/j.cam.2005.06.036

7. Schweitzer, M. A., A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations, Springer, 2003.
doi:10.1007/978-3-642-59325-3

8. Atluri, S. N. and S. Shen, "The Meshless Local Petrov-Galerkin (MLPG) method: A simple & less-costly alternative to the finite element and boundary element methods," CMES, Vol. 3, No. 1, 11-51, 2002.

9. Juntunen, J. S. and T. D. Tsiboukis, "Reduction of numerical dispersion in FDTD method through artificial anisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, Apr. 2000.
doi:10.1109/22.842030

10. Wang, S. and F. L. Teixeira, "Dispersion-relation-preserving FDTD algorithms for large-scale three-dimensional problems," IEEE Trans. on Ant. and Prop., Vol. 51, No. 8, 1818-1828, Aug. 2003.
doi:10.1109/TAP.2003.815435

11. Nehrbass, J. W., J. O. Jevtic, and R. Lee, "Reducing the phase error for finite-difference methods without increasing the order," IEEE Trans. on Ant. and Prop., Vol. 46, No. 8, 1194-1201, Aug. 1998.
doi:10.1109/8.718575

12. Cole, J. B., "A high-accuracy realization of the Yee algorithm using non-standard finite differences," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 991-996, Jun. 1997.
doi:10.1109/22.588615

13. Forgy, E. A. and W. C. Chew, "A time-domain method with isotropic dispersion and increased stability on an overlapped lattice," IEEE Trans. on Ant. and Prop., Vol. 50, 983-996, Jul. 2002.

14. Yu, Y. and Z. Chen, "A 3-D radial point interpolation method for meshless time-domain modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, 2015-2020, Aug. 2009.
doi:10.1109/TMTT.2009.2025450

15. Lee, J. F., R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Trans. on Ant. and Prop., Vol. 45, No. 3, 430-442, Mar. 1997.
doi:10.1109/8.558658

16. Naamen, H. and T. Aguili, "Unconditional stability analysis of the 3D-radial point interpolation method and Crank-Nicolson scheme," Progress In Electromagnetics Research M, Vol. 68, 119-131, 2018.

17. Jose, A. P., G. Ana, G. Oscar, and V. Angel, "Analysis of two alternative ADI-FDTD formulations for transverse-electric waves in lossy materials," IEEE Trans. on Ant. and Prop., Vol. 57, No. 7, 2047-2054, Jul. 2009.

18. Naamen, H., A. B. H. Hamouda, and T. Aguili, "Anisotropy analysis of the 3D-radial point interpolation method in lossy media," Progress In Electromagnetics Research C, Vol. 128, 207-218, 2023.

19. Harrington, R. F., Time Harmonic Electromagnetic Fields, IEEE Press Series on Electromagnetic Wave Theory, Wiley-Interscience, 2001.
doi:10.1109/9780470546710

20. Koh, I. S., H. Kim, J. Mi. Lee, J. G. Yook, and C. S. Pil, "Novel explicit 2-D FDTD scheme with isotropic dispersion and enhanced stability," IEEE Trans. on Ant. and Prop., Vol. 54, No. 11, Nov. 2006.

21. Fu, W. and E. L. Tan, "Stability and dispersion analysis for ADI-FDTD method in lossy media," IEEE Trans. on Ant. and Prop., Vol. 55, No. 4, Apr. 2007.
doi:10.1109/TAP.2007.893378

22. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, 2005.